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Flavonoids are ubiquitous in nature. They are also in food, providing an essential link between diet and prevention of chronic 
diseases including cancer. Anticancer effects of these polyphenols depend on several factors: Their chemical structure and 
concentration, and also on the type of cancer. Malignant cells from different tissues reveal somewhat different sensitivity 
toward flavonoids and, therefore, the preferences of the most common dietary flavonoids to various human cancer types 
are analyzed in this review. While luteolin and kaempferol can be considered as promising candidate agents for treatment 
of gastric and ovarian cancers, respectively, apigenin, chrysin, and luteolin have good perspectives as potent antitumor 
agents for cervical cancer; cells from main sites of flavonoid metabolism (colon and liver) reveal rather large fluctuations 
in anticancer activity probably due to exposure to various metabolites with different activities. Anticancer effect of 
flavonoids toward blood cancer cells depend on their myeloid, lymphoid, or erythroid origin; cytotoxic effects of flavonoids 
on breast and prostate cancer cells are highly related to the expression of hormone receptors. Different flavonoids are 
often preferentially present in certain food items, and knowledge about the malignant tissue‑specific anticancer effects of 
flavonoids could be purposely applied both in chemoprevention as well as in cancer treatment.
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INTRODUCTION

Numerous edible plant‑derived compounds have been linked to 
the chemoprevention and treatment of  cancer.[1‑9] For the past 
decades, much research has been developed in order to discover 
natural compounds with potential anticancer activity[6,10‑12] 
and several plant‑derived agents (e.g., paclitaxel, docetaxel; 
vinblastine, vincristine; topotecan, irinotecan, etoposide, etc.) 
have been successfully used for cancer treatments.[13‑15] Among 
the anticancer medications, 69% of  drugs approved between 
1940 and 2002 are either natural products or developed based 
on knowledge gained from natural products,[16,17] a rate which is 
much higher than in other areas of  drug development.[18] Natural 

products offer an untold diversity of  chemical structures, and it 
is very likely that phytochemicals will continue to be important in 
cancer therapeutics.[19‑21] Application of  plants in the treatment of  
cancer seems to be inevitable, constituting the basis for modern 
medical science and providing a great source for new drugs.[22,23]

Medicine and one’s daily food are equally important in making a 
sick body well.[24] Diet is intimately linked to both the incidence and 
avoidance of  many types of  cancer[25] and dietary behavior has been 
identified as one of  the most important modifiable determinants 
of  cancer risk.[26] Strong and consistent epidemiological evidences 
suggest that a diet enriched with naturally occurring substances 
significantly reduces the risk for many cancers.[27‑31] Indeed, the 
adoption of  diets rich in vegetables and fruits, together with the 
maintenance of  physical activity and appropriate body mass, could 
reduce the cancer incidence by 30‑40%.[32‑34] Moreover, several 
studies suggest that there is a decreased risk for different types 
of  cancer among vegetarians.[35] Numerous classes of  compounds 
present in fruits and vegetables are assumed to take the role of  
cancer‑preventive agents. Among these compounds, flavonoids 
have been proven to be particularly important.[27,29,36]

FLAVONOIDS AS POTENT ANTICANCER AGENTS

Flavonoids are naturally occurring polyphenolic metabolites 
distributed throughout the plant kingdom and found in 
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substantial amounts in fruits, vegetables, grains, nuts, seeds, tea, 
and traditional medicinal herbs.[37‑39] Within individual plants, 
flavonoids occur in every part but are usually concentrated in 
the leaves and flowers.[40] Flavonoids are edible plant pigments 
responsible for much of  the coloring in nature.[41,42]

Many of  the different flavonoids are part of  the regular human 
diet. Although they are nonessential dietary factors,[9] flavonoids 
are thought to be nutritionally valuable compounds,[43] being the 
key natural products that provide the most essential link between 
the diet and prevention of  chronic disorders. One of  the most 
investigated activities of  flavonoids is their contribution to cancer 
prevention and treatment.[6]

Several thousand flavonoids are known to occur in nature, defined 
chemically as compounds containing a phenylchromanone 
structure (C6‑C3‑C6) with at least one hydroxyl substituent.[44‑47] 
Flavonoids can be further divided into flavonols, flavones, 
flavanols, flavanones, anthocyanidins, and isoflavonoids based 
on the saturation level and opening of  the central pyran 
ring[15,45,48] [Figure 1].

The daily human intake of  flavonoids is quite different in 
amounts and classes due to various feeding habits of  people from 
different regions and cultures.[25,49] Reports of  estimated daily 
consumption of  flavonoids range from 20 mg/day to 1 g/day.[50] 
As the total flavonoid intake in Western countries is estimated 
at 23 mg/day,[51] humans consuming high fruit and vegetable 
diets may ingest up to 1 g of  these compounds daily.[52,53] No 
information is available about the content of  flavonoids in the 
diet of  vegetarians.[54,55] The main food sources of  major dietary 
flavonoids are presented in Table 1.

As natural products, flavonoids are regarded as safe and 
easily obtainable, making them ideal candidates for cancer 
chemoprevention or associated agents in clinical treatment.[3,43,56] 

Almost all artificial agents currently being used in cancer therapy 
are highly toxic and produce severe damage to normal cells.[57,58] 
The ideal anticancer agent would exert minimal adverse effects on 
normal tissues with maximal capacity to kill tumor cells and/or 
inhibit tumor growth.[12,34] The lack of  substantial toxic effects for 
long‑term therapies and inherent biological activity of  flavonoids 
make them ideal candidates for new therapeutics.[16,59] Indeed, 
flavonoids have been shown to reveal cytotoxic activity toward 
various human cancer cells with little or no effect on normal 
cells, and this fact has stimulated large interest in developing 
of  potential flavonoid‑based chemotherapeutics for anticancer 
treatment.[60,61]

Several observations have suggested that natural flavonoids 
have growth inhibitory effects on various kinds of  cancer cells 
mediated by different molecular targets and acting through diverse 
metabolic pathways.[62‑64] However, the precise mechanisms 
responsible for the antitumor effect of  flavonoids are still not 
thoroughly understood.[64,65] Flavonoids can easily bind to the 
cell membrane, penetrate in vitro cultured cells, and modulate 
the cellular metabolic activities.[66,67] Mitigation of  oxidative 
damage, inactivation of  carcinogen, inhibition of  proliferation, 
promotion of  differentiation, induction of  cell cycle arrest and 
apoptosis, impairment of  tumor angiogenesis, and suppression 
of  metastasis contribute to the anticarcinogenic activities of  
flavonoids.[24,25,30,32,49,68] These polyphenolic compounds can 
interact with xenobiotics metabolizing enzymes, inhibit several 
kinases involved in signal transduction, interact with estrogen 
type II binding sites, and alter gene expression patterns.[61,69‑71]

Normal cell growth is maintained by the balance between cell 
proliferation and cell death, and apoptosis is a central regulator 
of  tissue homeostasis.[72,73] Cells from a variety of  human 
malignancies have a decreased ability to undergo apoptosis in 
response to some physiological stimuli. Induction of  apoptosis 
in malignant cells may therefore represent a promising approach 

Figure 1: Scheme of major flavonoid aglycones and their glycosides
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Table 1: Structures and main food sources of major flavonoid aglycones and their glycosides
Flavonoids Structure Major food sources References
Flavonols

Quercetin Various fruits and vegetables, such 
as apples, citrus, and red grapes, 
Italian cabbage, broccoli, onions, 
tomato; especially abundant in 
capers and lovage leaves

[152]

Fisetin Various fruits and vegetables, such 
as cucumber, onion, persimmon, 
strawberry, apple, kiwi, and grape

[2,3,27,82,140‑142,153‑158]

Galangin Medicinal herbs, including Alpinia 
officinarum (Hance), Alnus pendula 
Matsum., Plantago major L., and 
Scutellaria galericulata L.; a major 
component of propolis

[6,7,25,159‑161]

Kaempferol Berries, tea, many commonly 
consumed fruits and vegetables, 
such as broccoli, kale, and endive; 
active constituent of Ginkgo biloba L.

[72,86,162,163]

Myricetin Tea, berries (especially grapes), 
fruits, and medicinal plants

[26,42]

Glycosides
Quercitrin Tartary buckwheat, some oaks 

species, some medicinal plants, such 
as Bauhinia malabarica Roxb. and 
Hypericum perforatum L.

[164‑166]

Rutin Abundant in various plants, such as 
buckwheat and apples as well as 
many plant‑based beverages, such 
as lime juice and noni

[124,129,167]

Flavanones
Naringenin Citrus fruits, such as grapefruits 

and orange fruits and juice, also in 
tomato; isolated from Salvia leriifolia 
Benth.

[18,32,46,75,102, 103,168,169]

Hesperetin Citrus fruits, such as orange and 
grapefruit fruits and juices

[104,170,171]

Contd...
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Table 1: Contd....
Flavonoids Structure Major food sources References
Glycosides

Naringin Citrus plants, most abundant in 
grapefruits being responsible for the 
bitter taste

[11,172‑175]

Hesperidin Citrus fruits, such as lemon, orange, 
and lime juices and peels

[8,124,176,177]

Flavones
Apigenin Widely distributed in fruits and 

vegetables, including onions, 
artichoke, orange, tea, wheat 
sprouts, and some seasonings; the 
most abundant sources are the leafy 
herb parsley and dried flowers of 
chamomile (Matricaria chamomilla L.)

[45,47,57,127,130, 178‑182]

Baicalein The root of Chinese herb Scutellaria 
baicalensis Georgi (also known as 
Baikal Skullcap or Huang Qin)

[20,183‑186]

Chrysin High levels in honey and propolis; 
found also in many plant extracts, 
including Passiflora caerulea L. 
flower

[187‑189]

Luteolin Various fruits and vegetables; 
abundant in onion, celery, spinach, 
green pepper, broccoli, beet, 
cabbage, cauliflower, artichoke, 
olive oil, tea, perilla leaf, parsley, 
peppermint, thyme, sage, rosemary, 
and oregano

[15,49,68,71,122, 190]

Nobiletin Citrus flavonoid extracted from citrus 
fruits and peel

[53,107,191]

Tangeretin Abundant in the peel of various 
citrus species, such as sweet orange 
and mandarin; the Dancy tangerine 
contains the highest total amount

[62,145,172]

Wogonin The root of Chinese herb 
Scutellaria baicalensis Georgi (also 
known as Baikal Skullcap or Huang 
Qin)

[20,131,135,184, 192]

Contd...
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to both chemoprevention and chemotherapy, and searching for 
agents that can specifically trigger apoptosis in tumor cells has 
become an attractive strategy in anticancer drug discovery.[38,74‑77] 
The anticancer efficacy of  flavonoids is due, at least in part to 
their ability to induce apoptosis of  tumor cells.[37,78‑81]

One of  the most common incidents required for human 
cancer development known as a hallmark of  malignant cells 
is deregulation of  the cell cycle.[35,82,83] Agents that can inhibit 
cell‑cycle progression and lead to cell‑growth arrest are very 
important in cancer prevention and therapy studies,[35] and 
considerable attention has been paid to the ability of  dietary 
flavonoids to inhibit cell‑cycle progression.[82] Flavonoids have 
been found to arrest cell‑cycle progression at either G1/S or 
G2/M boundaries by modulating of  multiple cell cycle regulatory 
proteins.[69] Somewhat conflicting results have been reported with 
regard to the stage‑specific arrest caused by one and the same 
compound,[59,84] and several studies have indicated the ability of  
flavonoids to block the cell growth at more than one stage of  
the cell cycle.[85]

Due to the polyphenolic structure, flavonoids have been found 
to possess both anti‑ and prooxidant action.[86] While antioxidant 
effect and ability to scavenge reactive oxygen species (ROS) 
have been shown to account for most of  the reported biological 
effects of  phenolic compounds, several recent studies have 
revealed that anticancer activities of  flavonoids may be mediated 
through prooxidant action.[49,87] Cancer cells exhibit a higher and 
more persistent oxidative stress level compared to normal cells, 
rendering malignant cells more vulnerable to being killed by drugs 
that boost increased ROS levels, such as some flavonoids.[88‑91] 
Whether a flavonoid acts as anti‑ or prooxidant depends on its 
dose, cell type, and also culture conditions.[37,90,92]

The specific activity of  flavonoids on cell function can also 
depend on their chemical structure.[93‑95] The structures of  the 
most common dietary flavonoids are presented in Table 1. 
Important factors affecting cytotoxic and/or antiproliferative 
activities of  polyphenols include the saturation of  the C2‑C3 
bond and the position as well as the number and substitution 
of  hydroxyl groups in the A and B rings.[69,96,97] However, even 
the minor modifications in the molecules can be responsible 
for strong variations in their activity, and flavonoids with 
very similar structures could not produce identical biological 

responses.[40,97‑99] Indeed, some authors have suggested that the 
anticancer capability of  flavonoids cannot be predicted based 
on their chemical composition and structure,[61] and it is the 
reason why no structure activity relationships are analyzed in 
the present work.

OBSCURITIES LIMITING THE USE OF 
FLAVONOIDS IN CANCER CHEMOPREVENTION 
AND TREATMENT

Flavonoids have been found to exert cytotoxic activities only 
at relatively high doses, within the micromolar concentration 
range.[26,82,100] The amount of  dietary flavonoids in plasma varies 
according to several parameters such as functional groups and 
daily intake.[101] However, achieving the plasma levels sufficient to 
reveal antiproliferative and cytotoxic effects may not be possible 
via oral administration.[9,100] For example, results from human data 
have shown that a full glass of  orange juice supplies about enough 
naringenin to achieve a plasma concentration of  0.5 μM;[102] a 
one‑time consumption of  approximately 550 g of  grapefruit 
juice results in a mean peak plasma concentration of  6 μM 
naringenin;[103] the physiological dose of  hesperetin attainable 
from drinking orange juice is in the range of  0.5‑6 μM;[104] 
human plasma concentration of  hesperidin reaches to 0.5 μM at 
5‑7 hours after ingestion of  0.5 liter of  commercial orange juice 
providing 400 mg hesperidin;[8] typical plasma concentration of  
apigenin is within 10 nM range;[45] the concentration of  chrysin in 
plasma after a single dose of  400 mg remains below 0.1 μM;[101] 
and maximal plasma levels of  luteolin reaches to about 0.2 μM at 
1‑2 hours after oral administration.[31] In contrast, methoxylated 
flavonoids display up to 100‑fold higher plasma concentrations 
on account of  the reduced phase II conjugation reactions.[101] 
Higher plasma levels can be achieved through intravenous 
injection,[9,100] and the plasma concentration of  flavonoids may 
also be significantly increased by regular intake for a prolonged 
period.[45,101,105]

Despite encouraging preclinical results, the usability of  flavonoids 
for chemoprevention has encountered only limited success, largely 
because of  inefficient systemic delivery and bioavailability.[106‑108] 
Flavonoids are most often found in plant materials in the form 
of  glycosides (bound to sugars), which are better soluble in water 
than the respective aglycones.[47,68,109] Most of  the glycosides 

Table 1: Contd...
Flavonoids Structure Major food sources References
Glycosides

Baicalin The root of Chinese herb Scutellaria 
baicalensis Georgi (also known as 
Baikal Skullcap or Huang Qin)

[20,66,73,184,193, 194]
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resist acid hydrolysis in the stomach[45] and are deglycosylated 
by β‑glucosidases in the small intestine.[69] The aglycones are 
further glucuronidated and sulphated by the intestinal mucosa 
and liver before release into the blood serum.[47,68,69] It is therefore 
likely that phytochemicals can accumulate in the small intestine 
and colon at levels greater than in plasma.[110] Bioavailability of  
flavonoids is determined by different factors, including the sugar 
moiety of  the polyphenolic compound and its further metabolism 
by the gut microflora,[11] showing that different groups of  
flavonoids may have different pharmacokinetic properties.[111,112] 
Moreover, considerable interindividual variation between humans 
can also influence the flavonoid metabolism, thus affecting the 
therapeutic action of  polyphenolic compounds.[103] Furthermore, 
the anticancer activity would be related not only to the parent 
flavonoid ingested but also to its metabolites; therefore, 
identification and measurement of  the physiological flavonoid 
conjugates are important to thoroughly understand the role of  
dietary polyphenols in human health.[31,52,69]

COMPREHENSIVE ANALYSIS OF CYTOTOXICITY 
OF FLAVONOIDS ON HUMAN CANCER LINES 
FROM DIFFERENT ORIGINS

Flavonoids have been demonstrated to suppress proliferation 
of  various cancerous cells.[69] However, not all polyphenolic 
compounds share the same antiproliferative activity;[113] and 
depending on their structure, flavonoids display differences in the 
sensitivity and selectivity toward tumor cells.[26,97,114] The sensitivities 
of  cancer cells against flavonoids can be different depending on 
their derived tissues,[16,115] indicating that the cytotoxicity induced 
by flavonoids might be related to selected cancer types.[30,116] Even 
in the case of  flavonoids with quite similar structures, there are 
compound‑specific effects which are relevant to modulate particular 
biochemical processes so that the development of  certain neoplasms 
could be differentially influential pointing to the tissue‑specific 
cytotoxic action.[117,118] The effectiveness of  flavonoids may vary 
also because of  the different disease etiologies.[119]

It is of  interest of  the current review article to determine whether 
the most common dietary flavonoids can exert some clear‑cut 
preferences to certain tumor tissue types. In nature, different 
members of  the flavonoid family are often preferentially present 
in some food items;[120] and knowledge about the malignant 
tissue‑specific cytotoxic effects of  flavonoids could be purposely 
applied both in the chemoprevention based on the genetic cancer 
risks and familiar anamnesis as well as in the cancer treatment. 
For this purpose, quantitative data characterizing the cytotoxic 
effects of  different flavonoids on different human tumor cell lines 
were compiled from the literature sources, and statistical analysis 
to calculate the respective mean parameters was performed. IC50 
values as the flavonoid concentrations required to inhibit 50% 
of  cell growth are the most common representative indexes of  
the dose‑response curve,[121] and these parameters were also used 
in the current work. The mean cytotoxic constants of  the most 
common dietary flavonoids on cancer cell lines derived from 

various organ sites are presented in Table 2. Cultured human 
malignant cell lines used for evaluating the cytotoxicity of  these 
compounds are listed in Table 3.

Paucity of data complicates the analysis
Despite the extensive investigation carried out with flavonoids in 
the past decades, there are still quite a few parameters available, 
characterizing quantitatively the efficacy of  polyphenolic 
compounds on certain cancer types. In this way, the IC50 values 
of  flavonoids measured using the cells derived from malignant 
esophageal tissues are too scarce to reveal any certain specificity 
patterns. At the same time, data measured on bone cancer lines 
show only very low or even no cytotoxic activity of  different 
flavonoids [Table 2].

Rather, few half‑maximal cytotoxic parameters are available also 
for cell lines derived from human tumors of  bladder, mouth, 
stomach, pancreas, and ovary. However, some activity patterns 
and tissue specificities of  flavonoids can still be brought forth for 
these organ sites. In the case of  bladder, cancer flavones apigenin 
and luteolin seem to be cytotoxically most active. Besides these 
two flavones, chrysin and flavonol kaempferol have also been 
reported to have antiproliferative activity and induce apoptosis in 
oral cavity cancer cells. Epithelium of  the oral cavity can absorb 
the flavonoids directly, and should benefit for high levels of  
exposure to these dietary phytochemicals.[122]

Flavones apigenin, baicalein, luteolin, nobiletin, and tangeretin 
have shown to be the most effective flavonoids against 
carcinomas of  stomach, whereas luteolin has even proposed to 
be a promising candidate agent for treatment of  gastric cancer.[123]

In addition to some flavonols, such as quercetin, fisetin, 
and galangin, flavanone glycoside hesperidin also inhibits 
human pancreatic cancer cells, explaining why lime juice rich 
in hesperidin has been suggested to possess potential in the 
prevention of  pancreatic cancer.[124]

The growth of  human ovarian cancer cells cannot only be 
suppressed by several flavones including apigenin, baicalein, 
luteolin, and wogonin but also by flavonols quercetin and 
kaempferol. Kaempferol is a good candidate compound for 
chemoprevention of  ovarian cancer; as in human studies, a 
significant 40% decrease in incidence of  ovarian cancer was 
detected for individuals with the highest quintile of  kaempferol 
consumption compared to those in the lowest quintile.[106,125] The 
intake of  this nontoxic and inexpensive phytochemical can be 
easily adopted into the lifestyle of  most women.[126]

Metabolic sites reveal large fluctuations toward 
flavonoid cytotoxicity
Present in dietary sources mostly as glycosides, flavonoids are 
cleaved in intestine by microbial enzymes and further metabolized 
in colon and liver to release into the blood as different conjugates. 
In this way, the epithelium of  intestine is exposed to higher 
concentrations of  flavonoids and their different metabolites than 



Sak: Anticancer action of flavonoids

128 Pharmacognosy Reviews | July-December 2014 | Vol 8 | Issue 16

Contd...

Table 2: Cytotoxicity of flavonoids on human cancer cell lines derived from various organ sites (mean 
IC50±SE, μM (n)). Cell lines used for assays are presented in Table 3
Flavonoids Assay 

time
Bladder Blood Bone

Altogether Myeloid Lymphoid Erythroid
Flavonols

Quercetin 24 h 125.7±44.7 (7) 73.7±53.5 (3) 354.7 (1) 101.5±27.5 (3) 136.6±55.5 (4)
48 h 876.9±13.1 (4) 42.6±8.3 (8) 41.2±6.0 (6) 83.3 (1) 10±2 (1) 91.5±39.6 (4)
72 h 29.4±5.8 (19) 14.9±7.2 (2) 33.5±9.5 (10) 27.5±7.8 (7) 68.2 (1)

Fisetin 24 h 23.0±7.0 (2) 23.0±7.0 (2) 152.8±4.9 (1)
48 h 23.5±8.5 (2) 32 (1) 15±2 (1) 127.2±3.7 (1)
72 h

Galangin 24 h
48 h 21.8±9.8 (2) 31.5 (1) 12±0.8 (1)
72 h

Kaempferol 24 h 99.8±28.8 (4) 78.7±27.8 (3) 163.1 (1) 148.4 (1)
48 h 42.4±2.3 (3) 40.4±1.8 (2) 46.4 (1)
72 h 36.9±9.0 (5) 30 (1) 48.2±2.4 (1) 35.4±15.4 (3)

Myricetin 24 h 85 (1) 270.7±78.7 (2) 192 (1) 349.3 (1)
48 h 101.7±51.0 (3) 51.5±16.0 (2) 202 (1)
72 h 29.3 (1) 29.3 (1)

Glycosides
Quercitrin 24 h

48 h
72 h >200 (1) >200 (1)

Rutin 24 h >80 (2) >100 (2) >200 (1) >100 (1)
48 h 420.8±233.8 (2) 187 (1) 654.7 (1)
72 h >40 (1) >40 (1)

Flavanones
Naringenin 24 h 658.9±41.2 (2) 700±100 (1) 617.7 (1)

48 h 152.1±18.9 (6) 171.5±18.5 (2) 164.9±21.8 (3) 75±6 (1) >100 (1)
72 h 22.0±1.5 (1) 22.0±1.5 (1) >100 (1)

Hesperetin 24 h 545.8±45.8 (2) 500±100 (1) 591.6 (1)
48 h 274.5 (1) 274.5 (1)
72 h >40 (1) >40 (1)

Glycosides
Naringin 24 h >100 (2) >500 (1) >100 (1)

48 h
72 h >40 (1) >40 (1)

Hesperidin 24 h
48 h
72 h >40 (1) >40 (1)

Flavones
Apigenin 24 h 36 (1) 69.4±19.4 (8) 48.5±6.5 (5) 56.3±16.4 (2) 200 (1)

48 h 28 (1) 55.6±12.7 (11) 33.6±4.8 (6) 31.4±4.4 (2) 115.6±18.7 (3)
72 h 29.0±5.1 (10) 28.6±5.0 (6) 18.8±5.2 (3) 62.0±2.5 (1) 106.7±4.1 (1)

Baicalein 24 h 106.9±55.3 (3) 53.8±26.3 (2) 213.3 (1)
48 h 33.5±8.0 (4) 28.6±8.9 (3) 48.2 (1)
72 h 287.0 (1) 21.7±3.3 (6) 22.2±7.8 (2) 21.5±4.1 (4) >1435 (1)

Chrysin 24 h 84.3 (1) 84.3 (1)
48 h 35.0±9.9 (3) 16 (1) 49.1 (1) 40±6 (1)
72 h 79.3±0.6 (2) 79.3±0.6 (2)

Luteolin 24 h 33 (1) 69.4±10.8 (4) 54.8±15.2 (2) 78.1 (1) 90 (1)
48 h 25 (1) 45.9±14.0 (5) 26.8±8.4 (2) 18.6 (1) 78.7±8.7 (2)
72 h 68.2 (1) 39.1±16.3 (4) 21.7±2.5 (1) 34.2±32.2 (2) 66.3 (1) 70.2±14.3 (3)

Nobiletin 24 h
48 h
72 h 11.1±1.7 (3) 12.6 (1) 10.3±2.7 (2)

Tangeretin 24 h
48 h
72 h 17.9±8.3 (4) 9.7±2.2 (3) 42.4±13.6 (1)

Wogonin 24 h 96.6±46.6 (2) 96.6±46.6 (2)
48 h 17.4 (1) 17.4 (1)
72 h 30.2±0.6 (2) 30.2±0.6 (2)
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Flavonoids Assay 
time

Breast Colon Liver Lung
Altogether ER+ ER−

Flavonols
Quercetin 24 h 125.8±52.6 (7) >100 (4) 138.3±72.2 (3) 44.5±3.5 (2) 147.5±34.3 (9) 113.0±35.8 (7)

48 h 71.6±27.1 (8) 44.7±11.0 (7) 44.3±21.7 (1) 34.9±7.3 (23) 93.1±12.9 (11) 41.3±13.0 (18)
72 h 50.6±11.7 (17) 70.4±22.2 (8) 33.1±7.3 (9) 65.2±11.7 (8) 39.7±6.0 (6) 34.8±7.7 (11)

Fisetin 24 h 78.4±3.4 (1) 78.4±3.4 (1) 306.7±121.0 (3) 66.7±6.7 (2) 36.2±16.2 (3)
48 h 68.5±3.5 (1) 68.5±3.5 (1) 119.7±14.7 (4) 60.8±1.3 (1) 29.4±14.4 (3)
72 h 50.9±19.8 (6)

Galangin 24 h 100.4±17.0 (3) >200 (1)
48 h >100 (1) 91.8±1.3 (1)
72 h 78 (1)

Kaempferol 24 h 52.7±8.3 (3) 69 (1) 44.6±2.4 (2) 83.2±29.6 (2) >200 (3) 29.7±20.3 (2)
48 h 53.3±6.5 (2) 53.3±6.5 (2) 61.7±12.7 (8) 84.7±8.5 (1) 46.5±23.5 (4)
72 h 47.0±2.9 (1) 47.0±2.9 (1) 107.4±43.3 (3) >200 (1) 18.0 (1)

Myricetin 24 h >100 (2) >200 (4)
48 h >100 (6) >200 (1) 8.1±6.5 (2)
72 h 62.1±3.5 (1) 62.1±3.5 (1) 68.0±20.4 (2) >200 (1)

Glycosides
Quercitrin 24 h >400 (1)

48 h >200 (1) >200 (1) >200 (1) >200 (1)
72 h >200 (1) >200 (1) >100 (1)

Rutin 24 h >100 (1) >100 (1) >100 (2) >200 (3) >200 (1)
48 h >100 (3) >100 (3) >100 (2) >200 (3) >100 (3)
72 h >100 (3) >100 (2) >100 (1) >100 (7) >200 (3) >100 (2)

Flavanones
Naringenin 24 h >200 (3) >100 (2) >100 (3)

48 h 123.4±33.4 (8) 117.5±42.0 (5) 133.1±66.9 (3) >100 (6) 306.7±38.4 (3) 140.0±38.0 (2)
72 h 63.1±3.1 (3) 61.6±4.6 (2) 66.2 (1) 134.2±8.8 (1) >40 (1)

Hesperetin 24 h >100 (1) >100 (1) 51.1±19.1 (2) ~100 (1)
48 h 75.9±26.6 (5) 86.8±47.1 (3) 59.6±0.0 (2) 95.4±53.6 (2) >100 (2)
72 h 49.7±10.0 (2) 39.7 (1) 59.6 (1) 69.4±19.2 (3)

Glycosides
Naringin 24 h >200 (3) >100 (2) 100 (1)

48 h >200 (1) >200 (1) >200 (1) >200 (1)
72 h 143.6±2.3 (2) >40 (1)

Hesperidin 24 h
48 h 51 (1) 51 (1) 77 (1) 106 (1)
72 h 60.2±5.0 (2) >40 (1)

Flavones
Apigenin 24 h 47.7±12.9 (6) 22.5±5.2 (2) 60.4±15.8 (4) 53.3±8.8 (3) 64.6±5.7 (1) 121.7±88.8 (2)

48 h 22.8±5.9 (9) 12.6±2.8 (5) 35.5±9.9 (4) 41.0±8.8 (6) 54.8±13.2 (6) 56.6±15.6 (2)
72 h 20.5±3.7 (10) 16.8±2.5 (6) 26.1±8.3 (4) 51.6±20.6 (7) 38.9±1.1 (1) 32.3±12.3 (3)

Baicalein 24 h >100 (1) 100 (1) 43 (1)
48 h 51.2±18.4 (2) 51.2±18.4 (2) 6 (1) 117.5±48.0 (4) 14.7±12.0 (2)
72 h 24.9±4.2 (3) 26.4±6.8 (2) 21.9 (1) 52.9±3.5 (2) 185.2 (1) 135.4 (1)

Chrysin 24 h 21.3±1.6 (3) 21.2±1.6 (3) 14.0±1.1 (1)
48 h 82.5 (1) 82.5 (1) 97.5±39.0 (4) >100 (1)
72 h 86.1±35.1 (3) 88.5 (1) 79.8 (1)

Luteolin 24 h 45.5±15.9 (4) 54.9±18.1 (3) 17.2 (1) 73.8±26.2 (2) 63.3±8.8 (3) 49.2±11.4 (4)
48 h 43.6±16.1 (3) 43.6±16.1 (3) 53.4±13.0 (6) 64.1±11.0 (8) 24.4±9.6 (4)
72 h 29.9±4.8 (9) 29.7±6.3 (7) 30.4±4.7 (2) 68.7±14.6 (7) 38.4±5.0 (4) 35.9±9.3 (8)

Nobiletin 24 h 66.2±1.3 (1) >50 (2)
48 h 1.8±0.4 (4) 2.5±0.5 (2) 1.2±0.0 (2) 148.9±74.4 (4) 31.4±27.9 (2)
72 h 22 (1)

Tangeretin 24 h 37.5±0.1 (1) >100 (1)
48 h 1.0±0.2 (4) 0.7±0.4 (2) 1.3±0.0 (2) 1.6 (1) 3.2 (1)
72 h 54.6±10.6 (4) 12 (1)

Table 2: Contd....
Glycosides

Baicalin 24 h >100 (1) >100 (1)
48 h 64 (1) 64 (1)
72 h 156.2 (1) 35.1±6.1 (3) 36.8±1.1 (1) 34.2±10.4 (2) >215 (1)
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Contd...

Table 2: Contd....
Wogonin 24 h 187.5±32.7 (6) 307.0±2.1 (1)

48 h 96.1±3.9 (2) 96.1±3.9 (2) 43.8±7.3 (3)
72 h 71.3±2.7 (1) 71.3±2.7 (1) 24.6±0.6 (1)

Glycosides
Baicalin 24 h 206 (1) 206 (1) 46.9±4.3 (2)

48 h 78.8 (1) 78.8 (1)
72 h 44.7±18.7 (2) 44.7±18.7 (2) 44.8 (1) 87.4 (1)

Flavonoids Assay time Melanoma Mouth Esophagus Ovary Pancreas Stomach
Flavonols

Quercetin 24 h 2.0±0.3 (2) 87.5±54.6 (4) 63.0±15.0 (2)
48 h 7.3±5.3 (3) 94 (1) 100.0±0.0 (2) 20.7±0.7 (1) 59.0±20.4 (6)
72 h 24.7±13.3 (2) 36.0±7.0 (3) 44.6±9.2 (7) 13.0±2.5 (4) 52.0±42.0 (4)

Fisetin 24 h 80 (1) 200.7±97.2 (3) 48 (1)
48 h 37.2 (1) 38 (1)
72 h 17.5 (1)

Galangin 24 h 22.1 (1) 100 (1)
48 h  
72 h 50 (1)  

Kaempferol 24 h 137.2±8.6 (2) 743 (1) 91.5±19.5 (2)  
48 h 97.8±39.7 (3) 35 (2) 28.7±1.1 (1)  
72 h 21.1 (1) 20 (1) >40 (1)

Myricetin 24 h 219.0±14.0 (2)
48 h 5.7±3.8 (2)
72 h >50 (3)

Glycosides
Quercitrin 24 h

48 h >200 (1)
72 h >200 (1)

Rutin 24 h 306.4±9.1 (1)
48 h >200 (1) 81.0±11.0 (1)
72 h 68.3±5.3 (1) >40 (2)

Flavanones
Naringenin 24 h  >100 (1)

48 h 43.3±21.9 (3) 237±43 (1) 363.5±43.5 (2)
72 h 452±24 (1) >180 (1)

Hesperetin 24 h >50 (1)
48 h 60 (1) >125 (1)
72 h >50 (4) >40 (1)

Glycosides
Naringin 24 h >100 (1)

48 h >200 (1)
72 h >40 (1)

Hesperidin 24 h 241.1±9.4 (1)
48 h >200 (1) 43.0±0.8 (1)
72 h 27.3±1.3 (1) >40 (1)

Flavones
Apigenin 24 h 71.0±52.1 (3) 40 (1) 131.5±19.5 (2) 87.8±10.2 (6)

48 h 27.5±13.5 (2) 22 (1)
72 h 28.7±21.7 (2) 30.7±17.0 (3) 7.9 (1) 16.1±2.9 (2)

Baicalein 24 h >200 (1)  
48 h 7.7±0.5 (1) >100 (1) 26 (1)
72 h >50 (3) >1435 (1) 32±2.6 (1) 37.9±21.6 (2)

Chrysin 24 h >50 (1) 64.3±28.8 (3) 85.0±22.0 (2) 88.7 (1)
48 h 51.8±11.2 (2)
72 h 30.0±20.0 (2) 13±2 (1) Not active 

(1)
Luteolin 24 h 13.3±4.9 (2) 63.2±14.6 (3) 50 (1)

48 h 17.1±7.5 (3) 75 (1) 30.3±0.7 (2)
72 h 6.9 (1) 55.0±22.3 (3) 7.1 (1) 20.3±5.2 (5)

Nobiletin 24 h
48 h 0.5 (1) 174.3±21.0 (4)
72 h 8.3 (1)

Tangeretin 24 h 19.3 (1)
48 h 0.3 (1)
72 h >50 (3) 6.5 (1)
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Table 2: Contd....
Wogonin 24 h

48 h
72 h 19.9±1.2 (1)

Glycosides  
Baicalin 24 h

48 h
72 h >215 (1) 64.3 (1)

Flavonoids Assay 
time

PROSTATE UTERINE References
AR+ AR‑

FLAVONOLS
Quercetin 24 h 72.2±11.5 (6) 75 (1) 78.9±14.0 (5) 80 (1) [152]

48 h 71.8±23.7 (4) 1.3±0.0 (1) 95.3±4.7 (3) 34.1 (1)
72 h 62.8±28.8 (6) 22.2±2.8 (2) 83.1±40.8 (4) 5 (1)

Fisetin 24 h ~50 (3) ~50 (2) ~50 (1) 60.6±8.6 (2) [2,5,141,142,153,154,156, 
157,195‑203]48 h 48.0±3.7 (5) 45.0±2.9 (4) ~60 (1) 47.7±11.7 (2)

72 h 27.6±4.9 (2) 22.7 (1) 32.5 (1)
Galangin 24 h [5,7,39,161,196,197,203‑206]

48 h
72 h 94.9 (1) 94.9 (1) >100 (1)

Kaempferol 24 h [23,46,49,60,86,125,195,196, 
198,199, 203,205,207‑228]48 h 52.6±42.5 (2) 10.1±0.3 (1) 95 (1)

72 h 37.6±10.0 (3) 52.5 (1) 30.2±11.7 (2) 11.0±2.0 (2)
Myricetin 24 h [26,46,51,60,69,96,111,145, 

196,198, 199,203,209,210, 
218,221,226,227, 229‑233]

48 h 67.0±30.3 (3) 6.6±0.1 (1) 94.2±2.8 (2)
72 h >100 (2) >100 (1) >100 (1)

Glycosides
Quercitrin 24 h [217,221,233‑236]

48 h >200 (2) >200 (2)
72 h >200 (1) >200 (1)

Rutin 24 h >100 (1) [49,124,129,145,161,167,196, 
199, 214,217,228,230,237‑247]48 h >200 (1) >200 (1) >100 (2)

72 h
FLAVANONES
Naringenin 24 h ~100 (1) [5,8,10,18,24,46, 

60,136,161,168,208, 
212,217,228,238,248‑256]

48 h 78.9±71.1 (2) 150 (1) 7.7±0.2 (1) 233.0±10.0 (2)
72 h 23.9±1.5 (1) 23.9±1.5 (1) 235.0±212.0 (2)

Hesperetin 24 h 650 (1) [60,65,69,96,97,128,136,161, 
171, 199,208,217,224,228, 
232,244,251, 252,254,257]

48 h 181 (1) 181 (1) >100 (2)
72 h

Glycosides
Naringin 24 h 750 (1) [8,10,11,102,199,217,228,238]

48 h >200 (1) >200 (1)
72 h

Hesperidin 24 h [124,199,217,228,258]
48 h 101 (1) 101 (1)
72 h >100 (2) >100 (2)

FLAVONES
Apigenin 24 h 35 (1) 33.3±4.3 (1) [30,35,49,57,60,61,99,108,

114,127, 130,136,149,150,
180,196‑201,206, 209,212,
214,217,220,222,224‑227, 

247,249,259‑282]

48 h 28.5±8.5 (2) 20 (1) 37 (1) 12.8±2.2 (2)
72 h 30.9±5.1 (5) 25.0±5.0 (2) 34.8±7.7 (3) 8.8±0.8 (7)

Baicalein 24 h [60,69,85,96,98,114,117,144, 
185, 199,203,232,247,252,254,

261,281‑296]
48 h ~25 (2) ~25 (2) 30 (1)
72 h 36.3±6.7 (10) 35.3±11.2 (5) 37.2±8.6 (5) 36.2 (1)

Chrysin 24 h 22.8±3.8 (1) [5,17,46,60,99,108,110,114, 
161,188, 197,199,203,206, 

214,226,227,270, 282,297‑299]
48 h 24.5±0.1 (1) 24.5±0.1 (1) 15.2±7.2 (2)
72 h 32.7±24.2 (2) 56.8 (1) 8.5±0.0 (1) 13.6±0.6 (2)

Luteolin 24 h [15,30,46,49,60,64,71,93, 
100,114,123, 145,196,199,203,

207,214,217,220,222, 
224‑228,242,249,261,272,276,

283,294, 300‑315]

48 h 32 (1) 32 (1) 10 (1)
72 h 23.5±5.3 (2) 18.2 (1) 28.8 (1) 13.4±6.7 (3)

Contd...
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Table 3: Human cancer cell lines used for 
cytotoxicity assays of flavonoids
Organ sites Model cancer cell lines used for cytotoxicity 

assays
Bladder BFTC905, EJ, J82, RT112, T24, TSGH8301
Blood

Myeloid Primary CD38++/MPC‑1‑ immature myeloma 
cells, HL‑60, RAW264.7, RPMI8226, THP‑1, U937

Lymphoid 232B4, CCRF‑CEM, CCRF‑HSB‑2, CEM, Daudi, 
Jurkat, MOLT‑4, P3HR1, Raji

Erythroid K562
Bone 6647, HOS‑1, MG‑63, PDE02, SaOs‑2, SW872, 

TC106, U2OS, U2OS/MTX300
Breast

ER+ Bcap‑37, MCF‑7, T47D, ZR‑75‑1
ER− AS‑B145, AS‑B244, HCC1937, MDA‑MB‑231, 

MDA‑MB‑235, MDA‑MB‑435, MDA‑MB‑453, 
MDA‑MB‑468

Colon Caco‑2, COL‑2, COLO201, COLO205, COLO320, 
COLO320HSR, HCT15, HCT116, HT‑29, LoVo, 
LS180, LT97, MS‑174T, NCOL‑1, RKO, SNU‑C4, 
SW480, T84, VACO235, WiDr

Liver BEL‑7402, HA22T, HA22T/VGH, Hep3B, HepG2, 
HLF, HuCC‑T1, Huh‑7, KIM‑1, PLC/PRF/5, 
QGY7701, SK‑Hep1, SMMC7721

Lung A549, ChaGo‑K1, COR‑L23, DMS‑114, GLC4, 
H441, H460, H461, H520, H661, H1299, H1792, 
LNM35, Lu‑1, NCI‑ADR/RES, SK‑LU1, SW900

Melanoma 451Lu, A375, A375‑C5, C32, MEL‑2, OCM‑1, 
SK‑MEL1, SK‑MEL5, SKMEL‑28, UACC‑62

Mouth Ca9‑22, Hep2, HSC‑2, HSC‑3, HSG, KB, 
OSCC‑1/KMC, SCC‑9, SCC‑25, SCC B56

Esophagus EC9706, Eca‑109, KYSE‑510, OE33, SNO
Ovary A2780, OVCAR‑5, SK‑OV3
Pancreas AsPC‑1, CD18, EPP85‑181P, EPP85‑181RDB, 

MiaPaca‑2, PANC‑1, Panc‑28, PK‑1, S2‑013
Prostate

AR+ 22Rv1, CWR22v1, LNCaP
AR− DU‑145, JCA‑1, PC‑3

Stomach AGC, BON, EPG85‑257P, EPG85‑257RDB, 
HGC‑27, KATO III, MGC‑803, MK‑1, MKN‑7, 
MKN‑28, MKN‑45, MKN‑74, NUGC‑2, SGC‑7901, 
SNU‑484, TGBC11TKB, TMK‑1, 

Uterine HeLa, RL95‑2, SiHa
ER=Estrogen receptor, AR=Androgen receptor

Table 2: Contd...
Nobiletin 24 h [53,107,118,136,145,191,217, 

228, 287,316]48 h 1 (1) 1 (1)
72 h

Tangeretin 24 h [69,96,108,136,145,175,191, 
199,217, 228,232,287,317]48 h 0.5 (1) 0.5 (1)

72 h
Wogonin 24 h 58.5±1.5 (2) 58.5±1.5 (2) [117,192,261,282,287,312, 

318‑324]48 h 17.0±2.4 (1)
72 h 53.0±13.0 (4) 36.0±6.1 (2) 70.0±20.0 (2)

Glycosides
Baicalin 24 h [98,144,194,203,283,286, 

292,326]48 h
72 h 53.0±2.9 (4) 56.8±4.0 (2) 49.2±2.4 (2) 39.8 (1)

to different metabolites can explain the large fluctuations in 
cytotoxic constants of  flavonoids measured using colorectal and 
liver cancer cell lines. It is possible that some metabolites could 
be more cytotoxic than parent compounds, giving a selective 
anticancer activity advantage in vivo.

The other aspect important to take into consideration by analyzing 
the cytotoxic data of  flavonoids includes their differential effect 
against tumors with specific mutational spectra. The differential 
effectiveness of  inhibition of  cell growth and arresting cell cycle in 
response to flavonoids in various colorectal cancer cell lines may be 
associated with the functional status of  p53 and/or ras genes. While 
apigenin has been indicated to have stronger effect on tumors with 
mutations in genes which are critical to colon cancer development, 
thus being more effective in controlling the growth of  tumors with 
certain mutational spectra and less effective in wild‑type normal 
cells,[29,46,127] kaempferol and hesperetin seem to exhibit higher 
resistance toward mutant p53 human colon cancer cell lines.[125,128]

Some other flavonoids including quercetin and baicalein have 
also been shown to be useful agents for prevention and treatment 
of  colon cancer [Table 2]. However, compared to quercetin and 
baicalein, their glycosides rutin and baicalin, respectively showed 
no growth inhibitory effects on colon cancer cells,[20,129] showing 
that the sugar moiety strongly affects the bioactivity of  flavonoids.

Accumulated evidences have indicated that the growth of  
hepatocarcinoma cells can be suppressed by flavones apigenin, 
luteolin, wogonin, and baicalin, thus being valuable for the 
therapeutic intervention of  human hepatomas [Table 2]. 
Apigenin may have some implications also in the prevention 
of  virus infection, leading to liver cancer development;[130] 
wogonin possesses hepatoprotective activities against diverse 
pathophysiological processes associated with hepatocarcinogenesis 
and can be extremely competitive as anticancer drugs against 
malignant hepatoma.[131,132]

Blood cells are potent target sites for flavonoids
Anticancer drugs are generally more effective against leukemia 
than other malignancies and in this aspect flavonoids are similar 
to other anticancer agents.[24] The mean cytotoxic constants of  
various flavonoids on different blood cancer cells are depicted 
in the Figure 2 showing that many common dietary polyphenols 

the tissues at other locations; and this would also be true for the 
colonic tumor cells, showing that colorectal cancer appears most 
relevant to dietary factors.[45,127] At the same time, the exposure 
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Figure 2: Cytotoxic effect of flavonoids on different human blood cancer cell lines
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Figure 3: Cytotoxic effect of apigenin on human breast cancer cell 
lines depending on the expression of estrogen receptors

Figure 4: Cytotoxic effect of flavonols on human prostate cancer cell 
lines depending on the expression of androgen receptors

exhibit growth inhibitory properties against several human 
hematologic malignancies.

Flavonoids hold much promise for the development of  new 
chemotherapeutics in myeloid and lymphoid leukemias.[133‑135] 
In general, flavonol aglycones (quercetin, kaempferol, myricetin) 
seem to exhibit somewhat stronger cytotoxic activity against 
blood cancer cells of  myeloid lineage compared to lymphocytic 
leukemia cell lines, whereas flavonol glycosides have no effect 
on the viability of  different blood cancer cells. In contrast to 
the inactivity of  flavanone naringenin in myeloid and lymphoid 
leukemia cell lines, this dietary polyphenol exerts cytotoxicity 
on erythroleukemia cells, thus revealing an opposite situation 
to flavones (apigenin, luteolin, tangeretin) in which cases strong 
anticancer activity has been measured in cell lines of  myeloid and 
lymphoid lineages but significantly lower sensitivity is expressed 
toward erythroleukemia cells [Figure 2]. This knowledge could be 
specifically applied in chemoprevention as well as clinical trials 
for treatment of  different hematologic malignancies.

Polyphenols affecting both hormone‑dependent 
and ‑independent tumor cells
Breast and prostate cancers are hormone‑dependent tumors 
as their development and growth can be dependent on 
the expression of  estrogen receptors (ER) and androgen 
receptors (AR), respectively.

Most breast cancers are heterogeneous and consist of  ER‑positive 
and ‑negative cells. Therefore, agents that are able to inhibit the 
growth of  both ER‑positive and ‑negative tumors are of  great 
interest.[136] Dietary flavonoids seem to display such dual activity, 
inhibiting both receptor‑positive and ‑negative breast cancer 
cells [Table 2]. For instance, no difference in the cytotoxicity of  
naringenin has been found between human breast cancer cell 
lines expressing or not expressing ERs[24] and the regular intake 
of  this flavanone may slow down the rate at which breast cancer 
cells proliferate.[103] High flavone intake has also been significantly 
correlated with a lower risk of  breast cancer[68] and apigenin, 
baicalein, and luteolin may be promising candidate agents in 
the treatment of  mammary tumors.[137‑139] However, although 
apigenin can target both ER‑dependent and ‑independent 
pathways, it seems to be somewhat more potent on ER‑positive 
human breast cancer cell lines [Figure 3], thus providing more 
promise for the treatment of  ER‑positive tumors.

AR are the critical factors for the prostate cancer cell growth and 
survival and in the development of  ablation‑resistant prostate 
tumors. As presented in Table 2, flavonoids display anticancer 
effects both in AR‑positive and ‑negative prostate cancer cell 
lines. However, flavonol aglycones (quercetin, fisetin, galangin, 
kaempferol, and myricetin) exert somewhat stronger cytotoxic 
activity on AR‑dependent prostate cancer cells [Figure 4]. Indeed, 
quercetin has been shown to decrease the androgen receptor 
expression in 22rv1 human prostate cancer cells,[140] whereas fisetin 
can inhibit the AR signaling pathways[141,142] showing that these 
compounds may afford more health benefits in chemoprevention 

and earlier stages of  prostate carcinogenesis when the tumor 
is still dependent on the presence of  androgens. In contrast, 
flavanone naringenin seem to display only very low potency 
toward AR‑positive human prostate cancer cells, suppressing 
at the same time the growth of  androgen‑independent human 
prostate cancer lines. Flavones like apigenin, baicalein, and 
baicalin express rather similar pattern of  growth inhibition 
of  both AR‑positive and ‑negative prostate carcinoma cells, 
thus being independent on androgen receptor status.[66,143,144] 
Flavonoid treatment may offer an alternative strategy to suppress 
androgen‑insensitive prostate tumor growth and flavonoids 
like naringenin, apigenin, baicalein, chrysin, and luteolin may 
be developed as promising chemotherapeutic agents against 
advanced and androgen‑independent human prostate tumors.

With regards to the structure of  flavonoids and nature of  
substituents, it is especially important to point out the fact 
that methylation of  the hydroxyl groups does not reduce 
the anticancer capacity but even increases it.[61,69] Therefore, 
polymethoxylated flavonoids, such as tangeretin and nobiletin, 
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Figure 5: Cytotoxic effect of flavonoids on different human lung cancer cell lines (a), melanoma cell lines (b), and uterine cancer cell lines (c)
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can be much more potent inhibitors of  tumor cell growth than 
free hydroxylated flavonoids[69,145] [Table 2].

Lung and uterine cancer as well as melanoma cells 
are strongly affected by flavonoids
Cytotoxic effects of  flavonoids on malignant cell lines derived 
from human lung and cervical cancers as well as melanoma are 
depicted in Figure 5. Several flavonol aglycones are able to cause 
decrease in cell viability with half‑maximal cytotoxic doses in low 
micromolar range [Table 2], revealing the most potent cytotoxic 
activity for myricetin in lung cancer cells and quercetin in 
melanoma and cervical cancer cells. Flavanones display no growth 
inhibitory effect on lung and cervical cancer cell lines, expressing 
at the same time some cytotoxicity on human melanoma cells.

Several members of  the flavone group display high cytotoxic 
activity against cervical cancer cells. Apigenin is probably more 
potent and sensitive in killing cervical cancer cells than cells of  
melanoma and lung cancer; the same seems to be true also for 
chrysin. Luteolin exerts high‑level activity both in cervical cancer 
as well as melanoma cell lines, showing that these flavones may 
have good perspectives as lead compounds of  potent antitumor 
agents for the respective target sites. On the other hand, 
polymethoxylated flavones nobiletin and tangeretin are among 
the most effective at inhibiting cancer cell growth of  melanoma 
and lung (tangeretin) and it is also the reason why these dietary 
polyphenols have emerged as potential drug candidates for 
treatment of  these malignancies [Table 2, Figure 5].

CONCLUSIONS AND FURTHER PERSPECTIVES

Flavonoids can play important beneficial roles in human 
nutrition and health status and chemoprevention is one of  the 
most realistic and promising approaches for the prevention of  
malignant disorders.[76,118] Diet–health relationships are very 
complex as food items usually act through multiple pathways 
and each ingredient can have different molecular targets. It is 
also the reason why phytochemical combinations may offer 
greater chemoprevention than administration of  single agents 
alone.[110] Both additive as well as synergistic interactions between 
several dietary flavonoids have been reported,[101,146] contributing 
to the health benefits of  fruits and vegetables. Therefore, 
consumers may gain more significant health benefits from whole 
foods than from intake of  dietary supplements.[146] However, 
individual phenolic compounds may also act antagonistically 
with other components,[147,148] and further efforts are necessary 
to understand their action modes as well as to provide further 
information for the cancer prevention in future.[149]

Flavonoids are not only promising food‑derived cancer preventive 
compounds but could also be considered as candidates for 
chemotherapeutic agents, revealing potential clinical significance in 
the cancer treatment.[73,150] Polyphenolic compounds like quercetin, 
myricetin, apigenin, baicalein, chrysin, luteolin, nobiletin, and 
tangeretin might be valuable agents in anticancer strategies and 

studies of  their clinical use for development of  novel drugs 
should be continued. Beneficial effects have been described also 
by combining certain flavonoids with standard chemotherapeutic 
drugs leading to decrease in the dosage and associated toxicity 
while targeting specific resistance mechanisms. In this way, the 
genotoxic damage caused by standard chemotherapeutics to 
normal cells can be diminished, thereby reducing the chance of  
developing of  secondary cancers.[45,151] Further work is certainly 
needed to develop and produce novel drugs from natural sources 
introducing structural variations into the backbone of  flavonoids 
and modifying their structures to further improve biological 
activity and exhibit more potent anticancer effects.

Despite a rather short period of  investigation of  the anticancer 
action of  flavonoids (for instance, apigenin was first proposed 
to interfere with the process of  carcinogenesis only in 1980s),[45] 
this field has undergone an extensive development. The 
cytotoxic data of  flavonoids compiled within the current work 
and relationships presented in this review article cannot only be 
useful in chemoprevention to choose the food items containing 
most active natural polyphenols on malignant cells of  certain 
cancer types, considering the individual genetic cancer risks and 
familial anamnesis but also in the selection of  parent compounds 
to design and synthesize novel chemotherapy drugs starting from 
the valuable material given to us by the nature.
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