Ethnomedicinal review of Usnakantaka (*Echinops echinatus* Roxb.)

Santosh Kumar Maurya, Ashwini Kumar Kushwaha, Ankit Seth

Department of B. Pharm (Ay.)/M. Pharm. (Ay.), Rajiv Gandhi South Campus, Banaras Hindu University, Barkachha, Mirzapur, Uttar Pradesh, India

Submitted: 28-11-2014 Revised: 17-12-2014 Published: 04-08-2015

ABSTRACT

Echinops echinatus Roxb. (*E. echinatus*), commonly known as “Usnakantaka,” is a xerophytic herbaceous plant traditionally used as a stimulant to treat use the term Sexual debility in Indian traditional systems of medicine. The roots, leaves, fruit, and bark are extensively used in folk medicine as well as in Ayurveda. Also, the plant shows a wide range of pharmacological activities such as antifungal, analgesic, diuretic, reproductive, hepatoprotective, antioxidant, anti-inflammatory, wound-healing, antipyretic, and antibacterial properties. Among the several active constituents, apigenin, apigenin-7-O-glucoside, echinaticin, 5,7-dihydroxy-8,4'-di methyl oxy-flavanone-5-0-β-D-glucopyranoside are the most important in terms of reported pharmacological activities. The current review focuses on the updated information from various scientific studies and reports available in the context of the phytoconstituents and pharmacology of this plant. This review also provides adequate information about the use of this plant in an Indian system of medicine, Ayurveda.

Key words: Apigenin, Ayurveda, echinaticin, *Echinops echinatus*, sexual disability

INTRODUCTION

Brahmadandi is a well-known drug in the Ayurvedic system of medicine for the treatment of sexual disability. It is used as a sexual stimulant both internally and externally. At present, a number of plants are known by the trade name Brahmadandi viz., *Echinops echinatus* Roxb. (*E. echinatus*), *Tricholepis glaberrima* DC, and *Argemone mexicana*. In the present article, the details of phytochemical and pharmacological reports on *Echinops echinatus* Roxb. were included.

Asteraceae is one of the largest flowering plant families, with around 900 species under 167 genera that are grown in India. The genus *Echinops* encompasses about 120 species of flowering plants. *E. echinatus* is a xerophytic herbaceous plant that is commonly known as “Brahmadandi” or “Utakatira.” It is widely distributed in the desert regions of Africa, the Mediterranean, India, and the Southeast Asian countries. Its root, leaves, fruit, and bark are the most commonly used parts. Within India, it grows at an altitude of 1,500 m throughout the country. It is ordinarily present on and along roadsides, grasslands, and open forest areas.

Vernacular names

- English: Indian globe thistle, Camel’s thistle
- Gujarati: Shuliyo, Utakanto, Utakato
- Hindi: Gokhru, Uthkanta, Uthkato
- Sanskrit: Kantalu, Kantaphala, Ulati, Utkantaka, Karabhadana, Srinalshunkashana
- Urdu: Barham dandi, Labh, Untkatara, Jaibir
- Marathi: Utkatar, Kate-chendu
- Telugu: Brahmadandi
- Kannada: Brahmadande
- Gujarati: Utkanto, Shuliya

BOTANICAL DESCRIPTION

It is an erect, rigid, pubescent, annual herb about 1 m in height. It has short, stout stems with branches widely spreading from the base. The leaves are alternately arranged, sessile, oblong, deeply...
phytotetrad, 7-12 cm long, and covered with cottony wool beneath; the lobes are triangular, simuate, and prickly, and the spines are often 2.5 cm long. Flowerheads occur in solitary white spherical balls (globose), 3-5 cm across, clustered at the ends of branches. The flowers are surrounded by strong white bristles resembling pappus hairs; the pappus is short, yellowish, and forms a short cylindrical brush above the achene. Petals of the tiny white flowers are 5 mm long. Flowering occurs between December and January.

PHYTOCHEMISTRY

Phytochemical screening of the plant has revealed the presence of triterpenoids, isoflavones, glycosides, phenolic compounds, and alkaloids. Various parts of the plant such as roots, leaves, flowers, and other aerial parts were used for the extraction of a variety of phytoconstituents. [Table 1 and Figure 1].

REVIEW IN AYURVEDA

A few references to this plant are available in Ayurvedic texts. It is cited to possess *katu* (pungent) and *tikta* (bitter) *rasa* (taste), *katu vipaka* (pungent postdigestive effect) and *vina virya* (hot potency). It pacifies *rasa* (The Air or Nervous System Humor) and *kapha* (The water humor or protective humors). Decoction of the root is given to pregnant women for facilitating delivery. Use of the plant is indicated in cases of *mutra krichha* (dysuria), *madhumeha* (diabetes), *jwara* (fever), *ashmari* (asthma), *trishna* (sweating), *jwara* (fever), and *vata* (cardiac diseases). Decoction of the root extract is effective in treating whooping cough. It is also used by the traditional healers of Chhattisgarh to treat people with poor sexual vitality. A paste of the root bark is applied superficially on the male genitals 1 h prior to intercourse. In addition, aqueous paste of the root is applied on the lower abdomen of a pregnant female to facilitate the delivery process. It is also recommended for internal use for the same purpose.

Indigenous tribal peoples of southern Rajasthan place the roots of the plant among the hairs of the pregnant woman's head to facilitate the delivery process, but it is believed that if it is not removed immediately after delivery, the uterus may come out. The root is an aphrodisiac as well as an abortifacient. A mixture of leaf powder or root extract and honey is taken in the morning to expel round worms. Ash of the whole plant is used with ghee or butter to treat leukorrhea. In Gujarat, people prepare a suspension of the root bark of *E. echinatus* with milk and use it to treat diabetes. The ash from the spines of the inflorescence is mixed with cow ghee and applied locally to cure eczema. In addition, leaf paste is used externally for skin papules. People in Orissa use this plant to cure diarrhea, while in Maharashtra, a decoction of the whole plant is used as febrifuge. For respiratory problems, fumigation is done by burning its leaves and roots; asthma patients get symptomatic relief by inhaling the fumes. The root extract is effective in treating whooping cough. It is also used in malarial fever and renal colic. In Rajasthan again, *E. echinatus* paste is smeared on the soles and palms to treat heatstroke. The indigenous people of the Cholistan

<table>
<thead>
<tr>
<th>Plant part</th>
<th>Nature</th>
<th>Extract</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole plant</td>
<td>Triterpenoid</td>
<td>Alcoholic extract</td>
<td>Taraxasterol acetate (1)</td>
</tr>
<tr>
<td></td>
<td>Isoflavone glycoside</td>
<td>Methanol extract</td>
<td>Echinopsidone, 7-hydroxy-isoflavone, kaempferol-4′-o-methyl ether, kaempferol-7-methyl ether (2), Myrecetin-3-0-alpha-l-rhamnoside, Kaempferol (3) and kaempferol-3-0-alpha-l-rhamnoside</td>
</tr>
<tr>
<td>Aerial parts</td>
<td>Phenolic compounds</td>
<td>Methanol extract</td>
<td>Apigenin (6), apigenin-7-O-glucoside (7), echinacin and echinacinc (8)</td>
</tr>
<tr>
<td></td>
<td>Alkaloids</td>
<td>Methanol extract</td>
<td>Echinopsidone (8), echinopsidine (9) and echinonolinone (10)</td>
</tr>
<tr>
<td></td>
<td>Flavone</td>
<td>Methanol extract</td>
<td>Taraxasterol acetate (1)</td>
</tr>
<tr>
<td></td>
<td>Glycosyl flavones</td>
<td>Chloroform fractionation of alcoholic extract</td>
<td>Apigenin (6), apigenin 7-O-glucoside (7)</td>
</tr>
<tr>
<td></td>
<td>Glycosyl flavones</td>
<td>Methanol extract</td>
<td>Echinacin and echinacinc (14)</td>
</tr>
<tr>
<td></td>
<td>Glycosyl flavones</td>
<td>N-Butanol fractionation of alcoholic extract</td>
<td>Apigenin 7-O-beta-d(4’-cis-p-coumaroyl) glucoside (15)</td>
</tr>
<tr>
<td>Leaves</td>
<td>Flavanone glycoside</td>
<td>Methanol extract</td>
<td>5, 7-dihydroxy-8,4′-dimethoxy flavanone-5-O-α-L-rhamnopyranosyl-7-O-β-D-arabinopyranosyl-(1→4)-O-β-D-glucopyranoside, dihydroquercetin-4′-methyl ether (11)</td>
</tr>
<tr>
<td>Roots</td>
<td>Glycosyl flavones</td>
<td>Methanol extract</td>
<td>Lupeol (12)</td>
</tr>
<tr>
<td>Flowers</td>
<td>Acylicllavone glucoside</td>
<td>Methanol extract</td>
<td>Apigenin (6), apigenin 7-O-glucoside (7)</td>
</tr>
<tr>
<td></td>
<td>Alkaloid</td>
<td>Methanol extract</td>
<td>Echinin (13)</td>
</tr>
<tr>
<td></td>
<td>Alkaloid</td>
<td>Methanol extract</td>
<td>7-hydroxy-echinonolinone (14)</td>
</tr>
</tbody>
</table>

Table 1: Phytoconstituents of *E. echinatus*
Figure 1: Structures of phytoconstituents of *E. echinatus*
desert (Pakistan)\(^{[9]}\) and Gond tribe of Bhandara, Maharashtra\(^{[7]}\) use this plant to treat liver disorders. In case of scorpion stings, the root is eaten raw directly in order to relieve pain.\(^{[5]}\) In Kerala, decoction of the whole plant, leaf paste, and leaf powder are used to treat diabetes.\(^{[8]}\) The Pashto tribe of Malakand District, Pakistan use it for gastrointestinal disorders, respiratory illness, nerve disorders (hysteria and epilepsy), cardiovascular complaints, and circulatory diseases. The plant is recommended for jaundice, hysteria, dyspepsia, hoarseness of throat, and cough. The powdered root is used as an antilice treatment and also applied to the wounds of cattle for killing maggots.\(^{[46]}\) Local application of the root powder mixed with acacia gum on the hair kills lice.\(^{[22]}\) Decoction of the root is used as a remedy for polyurea.\(^{[17]}\) It is also given to horses as special fodder, which alleviates their digestive problems.\(^{[41]}\) The plant is a diuretic, liver tonic, aphrodisiac, general tonic, and nervine tonic. It is also recommended in hysteria, dyspepsia, jaundice, and scrofula.\(^{[7,22]}\) Its roots have been claimed to be useful in treating colds, whooping cough in children, fever, and wounds.\(^{[42,43]}\) It increases the appetite, stimulates the liver, and is useful against brain disease, chronic fever, migraine, heart diseases, joint pains, urinary disorder, urinary infection, as well as worm and hemorrhoids in Ethiopia.\(^{[44]}\)

PHARMACOLOGICAL REVIEW

Antifungal activity

Several phenolic compounds like apigenin (6), apigenin-7-O-glucoside (7), echinacin, and echinacticin have been isolated from *E. echinatus*. Also, two methylated derivatives, echinacin permethyl ether and apigenin-5,4’-dimethyl ether, have been reported, which were synthesized from echinacin and apigenin-7-O-glucoside (7). These compounds have been reported for their activity against the germination of conidia of Alternaria tenuissima (Kunz. ex Pers) Wiltshire, which causes leaf blight disease in the pigeon pea (Cajanus cajan) at concentrations ranging 25-150 μg/mL. Echinacin at 150 μg/mL is considered to be the most potent of these compounds.\(^{[13]}\)

Analgesic activity

In one study, the analgesic property of the methanolic extract of the aerial parts and roots has been reported. The analgesic potential has been measured using hot plate, tail immersion, and tail flick models; it was reported that the methanolic extract at 250 mg/kg and at 500 mg/kg body weight exhibits significant analgesic activity.\(^{[24]}\)

Diuretic activity

The methanolic extract of the aerial parts and roots of *E. echinatus* has also been evaluated for diuretic activity in an *in vivo* Lipschitz test model. The results show a significant increase in urine volume and electrolyte excretion at 250 mg/kg and 500 mg/kg body weight.\(^{[48]}\)

Reproductive activity

The terpenoid fraction prepared from the petroleum ether extract of the roots of *E. echinatus* at the doses of 30 mg/kg and 60 mg/kg body weight has been evaluated, and it shows a significant decrease in the weight of the reproductive organs. In addition, there was a significant decrease in the levels of serum testosterone and cauda epididymal sperm concentration.\(^{[10]}\)

Hepatoprotective activity

The ethanolic extract of *E. echinatus* at 500 mg/kg/day and 750 mg/kg/day has been tested in CCl\(_4\)-intoxicated rabbits for 7 days, and the serum biochemical parameters and histopathological observations of the liver have been reported. The extract shows significant reinstatement in serum glutamine pyruvate transaminase (SGPT), serum glutamine oxaloacetate transaminase (SGOT), alkaline phosphatase (ALP) levels as compared to CCl\(_4\) and silymarin control groups. Histopathological findings also confirm the hepatoprotective potential of the plant.\(^{[27]}\)

Antioxidant activity

The free radical-scavenging property of *E. echinatus* has also been reported in various *in vitro* models, such as the scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, nitric oxide radical, and superoxide anion.\(^{[40]}\)

Anti-inflammatory activity

The ethanolic extract of the whole plant of *E. echinatus* was studied in carrageenan-, formaldehyde- and adjuvant-induced inflammation in rats. The extract showed significant inhibition of acute inflammation.\(^{[49]}\) A triterpenoid “taraxasterol acetate (1)” from *E. echinatus* has been reported for anti-inflammatory potential in albino rats (19 mg/kg and 100 mg/kg) for carrageenan-, formaldehyde- and adjuvant-induced inflammation.\(^{[14]}\) In addition, the isolation and structural elucidation of a new anti-inflammatory agent (5,7-dihydroxy-8,4’-dimethoxy-flavanone-5-O-α-L-rhamnopyranosyl-7-O-β-D-arabinopyranosyl-(1→4)-O-β-D-glucopyranoside) from *E. echinatus* has been reported. The compound has been evaluated for anti-inflammatory activity in carrageenan-induced hind paw edema, in which 32.21% inhibition of edema has been reported.\(^{[13]}\)

Protective effect on prostate

The butanolic fraction of the ethanolic extract of *E. echinatus* has been reported for its protective effect on the prostate. The extract was found to prevent the increases in prostate weight induced by testosterone and to reduce prostate-specific antigen (PSA) levels significantly. It was further evaluated for *in vitro* 5α-reductase inhibitory activity. Butanolic and water-insoluble fractions of the ethanolic extract were found to be significant inhibitors of 5α-reductase compared to finasteride.\(^{[54]}\) But the petroleum ether and aqueous extracts did not show significant activity.\(^{[21]}\)

Anti-irritant activity

The anti-irritant activity of *E. echinatus* was investigated in several fractions of the chloroform extract of powdered plant. The fractions were tested on abraded and irritated rabbit skin. Out of five fractions, two were reported to have significant effect.\(^{[53]}\)
Antibacterial activity
A mother tincture of *E. echinatus* has been evaluated for antibacterial activity against several microorganisms. It was found to be highly effective against *Salmonella typhi*, moderately effective against *Escherichia coli*, and not very effective against *Pseudomonas aeruginosa* at 200 μg/mL and 400 μg/mL strength of mother tincture.[53]

Antipyretic activity
The antipyretic activity of the ethanolic extract of *E. echinatus* has been evaluated in rabbits. At 500 mg/kg and 750 mg/kg, it shows antipyretic activity but less than positive control.[54]

Wound-healing activity
Extracts of *E. echinatus* in petroleum ether, chloroform, ethanol, and distilled water have been evaluated for wound-healing activity in incision, incision, and dead space models.[55,56]

CONCLUSION
The documentation of medicinal plants along with their potential uses in the health care system is very important, especially for those plants that have been documented earlier in traditional systems of medicine and have been prescribed for a long time by traditional practitioners. In this review, various phytochemical and pharmacological investigations of one plant have been reported, which account for its hepatoprotective, diuretic, analgesic, antifungal, antioxidant, anti-inflammatory, antibacterial, antipyretic, wound-healing, and other properties. This review provides detailed and systematic information about the concerned plant, which may prove to be useful for researchers, and for the promotion of the traditional knowledge of medicinal plants.

REFERENCES

33. Dash SK, Padhy S. Review on Ethnomedicines for diarrhoea
diseases from Orissa: Prevalence versus culture. J Hum Ecol
2006;20:59-64.
34. Patil HM. Ethnobotanical Notes on Satpura Hills of Nandurbar
35. Sharma L, Khandelwal S. Traditional uses of plants as cooling
agents by the tribal and traditional communities of dang region
36. Panhwar AQ, Abro H. Ethnobotanical studies of Mahal
37. Gupta R, Vairale MG, Deshmukh RR, Chaudhary PR,
Wate SR. Ethnomedicinal uses of some plants used by Gond
tribe of Bhandara district, Maharashtra. Indian J Tradit Knowl
38. Gayake DN, Awasarkar UD, Sharma PP. Indigenous Traditional
Medicinal Plant Resources from Ahmednagar District,
39. Jayakumar G, Ajithabai MD, Sreedevi S, Viswanathan PK,
Remeshkumar B. Ethnobotanical survey of the plants used in
40. Murad W, Ahmad A, Gilani SA, Khan MA. Indigenous knowledge
and folk use of medicinal plants by the tribal communities of
Hazar Nao Forest, Malakand District, North Pakistan. J Med
Plants Res 2011;5:1072-86.
41. Qureshi RA, Ghurfan MA, Sultana KN, Ashraf M, Khan AG.
Ethnobotanical studies of medicinal plants of Gilgit district and
43. Dadhich LK, Sharma N, Dadhich I. Medicinal plants in an urban
environment: Study of some important medicinal plants in urban
44. Desta B. Ethiopian traditional herbal drugs. Part II: Antimicrobial
activity of 63 medicinal-plants. J Ethnopharmacol
diuretic activity of root and aerial part methanolic extracts of
46. Padashetty SA, Mishra SH. Effect of terpenoidal fraction of
Echinops echinatus roots on reproductive parameters of male
47. Eram S, Ahmad M, Arshad S. Experimental evaluation of
Echinops echinatus as an effective hepatoprotective. Sci
Essays 2013;8:1919-23.
48. Rudrappa JN, Mohmoud R. Free radical scavenging activity
of Echinops echinatus Roxb. root. Iranian J Pharmacol Ther
2010;9.
49. Singh B, Gambhir SS, Pandey VB, Joshi VK. Anti-inflammatory
activity of Echinops echinatus. J Ethnopharmacol
50. Agrawal M, Nahata A, Dixit VK. Protective effects of Echinops
echinatus on testosterone-induced prostatic, hyperplasia in rats.
51. Nahata A, Dixit VK. Evaluation of 5α-reductase inhibitory
activity of certain herbs useful as anti androgens. Andrologia
52. Zaheer M, Naqi H, Rahman S, Rehman S. Anti irritant activity of
extract from the aerial parts of Echinops echinatus compositae.
53. Ahmad M, Ghafoor N, Aamir MN. Antibacterial activity of mother
tinctures of cholistan desert plants in Pakistan. Indian J Pharm
54. Alam VK, Hussain H, Ahmad S. Antipyretic Activity of Medicinal
Plants of Cholistan Desert. Pakistan: Lambert Academic
Publishing; 2011.
56. Bhargavi SC, Kumar AA, Kumar VS, Babu RV. Ancient and
modern view of wound healing: Therapeutic treatments. Res J

How to cite this Article: Maurya SK, Kushwaha AK, Seth A. Ethnomedicinal review of Usnakantaka (Echinops echinatus

Source of Support: Nil, Conflict of Interest: None declared