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Huntington’s disease  (HD) is a neurodegenerative disorder characterized by progressive motor dysfunction, including 
chorea and dystonia, emotional disturbances, memory, and weight loss. The medium spiny neurons of striatum and cortex 
are mainly effected in HD. Various hypotheses, including molecular genetics, oxidative stress, excitotoxicity, metabolic 
dysfunction, and mitochondrial impairment have been proposed to explain the pathogenesis of neuronal dysfunction and 
cell death. Despite no treatment is available to fully stop the progression of the disease, there are treatments available to 
help control the chorea. The present review deals with brief pathophysiology of the disease, plants and phytochemicals 
that have shown beneficial effects against HD like symptoms. The literature for the current review was collected using 
various databases such as Science direct, Pubmed, Scopus, Sci‑finder, Google Scholar, and Cochrane database with a 
defined search strategy.
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INTRODUCTION

George Huntington, an Ohio physician, first described 
Huntington’s chorea or Huntington’s disease (HD). It is an 
autosomal dominant inherited neurodegenerative disorder 
characterized by progressive motor dysfunction, including 
chorea and dystonia, emotional disturbances, memory, 
and weight loss.[1‑3] The pathological alterations mainly 
affect the medium spiny neurons (MSNs) of striatum, and 
to lesser extent of cortex. There is also loss of γ‑amino 
butyric acid  (GABA) and enkephalin neurons of basal 
ganglia in HD[2,4] along with modifications in the number of 
N‑methyl‑D‑aspartate (NMDA) receptors.[5] HD is also caused 
by expansion of the Cytosine‑Adenine‑Guanine  (CAG) 
repeats which leads to the formation of polyglutamine 
stretch. The CAG repeat length and the onset age for 
HD are inversely correlated to each other.[1] Death 
normally occurs 15–20  years after the first appearance of 

symptoms.[6] Various biochemical alterations  [Figure  1] 
found in the caudate of patients with HD include decreased 
GABA and acetylcholine (ACh) levels, and their synthesizing 
enzymes glutamate decarboxylase (GAD), and choline‑acetyl 
transferase (CAT), respectively. There is also a decrease in the 
concentration of certain peptides that are present specifically 
in middle‑sized spiny neurons.[7,8]

HD currently occurs in many different countries and ethnic 
groups across the globe.[9] It has a worldwide prevalence 
of five to eight per 100,000 people with no gender 
predominance. Europe and countries of European origin 
have utmost frequencies of HD. In the USA, estimates of 
the prevalence of HD range from 4.1 to 8.4 per 100,000 
people.[10,11] In India, pervasiveness of HD is higher and is 
closer to that occurs in Western Europe.[12] In the present 
review, an attempt has been made to highlight various plants 
and phytochemicals that have shown beneficial effects against 
this neurodegenerative disorder. Evidences used are mostly 
details from researches on animal models or on bioactive 
principles.

CLINICAL CHARACTERISTICS

The whole course of HD progression has been divided into 
three major stages based on the severity of the disease: Early, 
middle, and late. HD is usually associated with the triad of 
motor, cognitive, and emotional disturbances.

Motor symptoms
The movement difficulties are associated with involuntary 
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movements and abnormal voluntary movements.[2,6] The 
involuntary movements usually follow a biphasic pattern, 
initially hyperkinetic that increase with time, followed by 
bradykinesia leading to severe hypokinesia and rigid‑akinetic 
state.[13] Characteristic abnormal involuntary movements 
involve Chorea, or choreoathetosis, which consist of 
continuous and irregular jerky or writhing motions.[6,14]

Non‑motor symptoms
Patients suffering from HD have particular and distinctive 
cognitive impairments.[2,6] The nature of the progressive 
cognitive disorder is “frontal‑subcortical”, and is also called 
as subcortical dementia. Common cognitive features include 
bradyphrenia, defective recall, deterioration of complex 
intellectual functions, difficulty in executing functions, 
and personality changes.[6,13] Apart from various cognitive 
abnormalities, various other psychiatric disturbances such as 
depression, anxiety, irritability, aggression, impulsivity, and 
tendency to suicide are also the key features of HD.[6,10,13‑15]

PATHOLOGICAL FEATURES OF HD

Oxidative stress in HD
Oxidative stress  (OS) is a mainstay of the pathology of 
neurodegenerative disorders. In neurodegenerative diseases, 
high levels of reactive oxygen species  (ROS) generation 
and decreased activity of anti‑oxidant mechanisms leads 
to neuronal cell death.[16,17] Oxidative stress leads to 
lipid peroxidation, protein oxidation, deoxyribonucleic 
acid  (DNA) mutation, and oxidation causing damage to 
nerve cells. Various studies have shown a significant increase 
in levels of 8‑hydroxydeoxyguanosine  (an oxidized DNA 
marker) in the caudate, mitochondrial DNA  (mtDNA) 
of the parietal cortex of HD patients, and in forebrain 
tissue and striatum of rodents.[18‑21] Elevated levels of 
malondialdehyde  (MDA), a marker of lipid peroxidation, 
3‑nitrotyrosine, and heme‑oxygenase have also been 
observed in the brain of HD patients and rodents.[22,23] OS 

also promotes mutant Huntingtin aggregation and mutant 
Huntingtin‑dependent cell death by mimicking proteasomal 
malfunction.[24] Increased levels of free radicals impair 
mitochondrial functions, energy production, and metabolic 
inhibition predisposes to excitotoxic damage.[3,25] The studies 
mentioned above clearly indicate the OS plays an important 
role in pathogenesis of HD but a direct association between 
OS and HD has not been reported.

Excitotoxicity
It is one of the suppositions that have been set forth to explain 
the degeneration of spiny projection neurons of the striatum in 
HD. According to this hypothesis, there is excessive activation 
of glutamate receptors and decreased uptake of glutamate by 
glia or hypersensitivity of post‑synaptic glutamate receptors 
on striatal projection neurons. These biochemical changes, 
along with pathological signaling downstream of glutamate 
receptor activation  (due to altered intracellular calcium 
homeostasis) and mitochondrial dysfunction, results in 
neuronal dysfunction and death of striatal MSNs.[26,27]

Metabolic dysfunction and mitochondrial impairment 
in HD
Mitochondria, the power source of the cell, are the sites of 
oxidative phosphorylation and cellular respiration leading to 
generation of adenosine triphosphate (ATP). They also play 
a significant role in the maintenance of a low concentration 
of calcium within the cytosol. Mitochondrial dysfunction, 
leading to decreased mitochondrial oxygen consumption, 
glucose metabolism, and levels of cyclic adenosine 
monophosphate (cAMP) in the cerebrospinal fluid  (CSF), 
has been reported in individuals affected from HD[28‑30] and in 
HD post‑mortem brain.[31] Further, there is an augmentation 
in the lactate levels in the CSF as well as in cerebral cortical 
tissue.[32,33] Deregulation of mitochondrial function by a 
mitochondrial toxin, 3‑nitropropionic acid  (3‑NP), causes 
metabolic impairment due to energy impairment, oxidative 
stress, and excitotoxicity[34‑37] leading to cytotoxicity mainly 
in the striatum despite the fact that metabolic impairment 
actually occurs throughout the entire body and brain.[37,38] All 
these changes due to mitochondrial dysfunction also make 
striatal neurons sensitive to excitotoxicity in HD.

Protective effects of herbs and secondary metabolites 
in HD
Nature is the best combinatorial chemist and possibly has 
answers to all diseases of mankind. Many of the thousands 
of plant species growing throughout the world have a direct 
pharmacological action on the body. Natural compounds 
with the effects of anti‑oxidant, anti‑inflammation, calcium 
antagonization, anti‑apoptosis, and neurofunctional 
regulation exhibit preventive or therapeutic effects on 
various neurodegerative diseases.[39,40] Some of the plants 
and phytochemicals that have shown efficacy against 
3‑NP‑induced neuronal impairment, a widely used animal 
model for HD, are discussed below:

Figure 1: Various biochemical changes during Huntington’s disease
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Bacopa monnieri
Bacopa monnieri (BM) or Herpestis monniera, commonly 
known as Brahmi  (Fam: Scrophulariaceae), is found 
throughout the Indian subcontinent and is classified as a 
medhyarasayana in Ayurveda.[41,42] It is used for the treatment 
of epilepsy, insomnia, anxiety, and as memory enhancer for 
centuries.[43,44]

The major chemical constituents present in the plant are 
dammarane type of tri‑terpenoid saponins, Bacosides A and 

B [Figure 2].[41,45] Apart from these major constituents, it also 
contain various types of saponin including bacopasaponin 
A‑G[46‑49] along with pseudojujubogenin, jujubogenin,[50] 
bacopaside I‑V, X, and N1 and N2.

[51‑53] The plant has also been 
reported to contain brahmine, herpestine, and monnierin.[54,55] 
Ample reports have shown memory enhancing effects of 
the plant.[44,56‑58] Among various constituents, Bacoside A 
has shown to improve memory.[42,59] Various clinical trials 
have also shown beneficial effects of Brahmi in improving 

Figure 2: Various chemical constituents
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memory.[60] The neuroprotective and memory enhancing 
effects of BM extracts have been reported due to several 
mechanisms such as chelation of metal ions,[61] scavenging 
of free radicals,[62] and enhanced antioxidative defense 
enzymes.[62,63] Besides this, it also displays antioxidant,[63] 
anti‑stress,[64] antidepressant,[65] anxiolytic,[66] free radical 
scavenging capacity,[62] hepatoprotective,[67] and antiulcerogenic 
activity.[68]

3‑NP inactivates the mitochondrial enzyme succinate 
dehydrogenase  (SDH) and complex II‑III of the electron 
transport chain.[2,69,70] It also increases the levels of ROS, MDA, 
and free fatty acids, suggesting the vital role of oxidative stress 
in the manifestation of neurotoxicity.[71] The dietary intake 
of BM leaf powder significantly decreased the basal levels of 
several oxidative markers, enhanced thiol‑related antioxidant 
molecules and activities of antioxidant enzymes suggesting 
its antioxidant potential. One of the study has showed that 
dietary BM supplements leads to a significant protection 
against neurotoxicant‑induced oxidative damage in brain.[43] 
The study further suggests that due to strong antioxidant 
effect and protective effect against stress‑mediated neuronal 
dysfunctions BM can be useful in HD treatment.

Ginkgo biloba (maidenhair tree, family: Ginkgoaceae)
Ginkgo biloba L. was mentioned in Chinese Materia Medica 
5,000 years ago.[72] Since ginkgo tree is known to be among the 
oldest living species on this planet, it is called a “living fossil”.[73] 
The chemical constituents present in the leaf are the trilactonic 
diterpenes: Ginkgolide A‑C, Ginkgolide J‑M; a trilactonic 
sesquiterpene: Bilobalide; flavonoids including quercetin, 
kaempferol, isorhamnetins, and biflavonoids (amentoflavone, 
bilobetin, 5‑methoxybilobetol, ginkgetin, isoginkgetin, 
and sciadopitysin); and proanthocyanidins  [Figure  2].[73‑75] 
Ginkgo leaf extract has exhibited protective effects against 
neurodegenerative diseases like dementia (Alzheimer’s disease), 
cardiovascular diseases, cancer, stress, tinnitus, geriatric 
complaints like vertigo, age‑related macular degeneration, 
and psychiatric disorders like schizophrenia.[76] These versatile 
activities of the Ginkgo leaf extract are due its antioxidant 
effect,[77] anti‑platelet activating factor (Anti‑PAF) activity (cardio 
and cerebral vascular diseases),[75] inhibition of beta amyloid 
peptide (Aβ) aggregation (prevent Alzheimer’s progression),[78] 
decreased expression of peripheral benzodiazepine receptor 
(stress alleviation),[79] and stimulation of endothelium derived 
relaxing factor (improve blood circulation).[74] The G. biloba 
extract (100 mg/kg, i.p. for 15 days) improved the 3‑NP induced 
neurobehavioral deficits[80] and also decreased the level of striatal 
MDA. Standardized G. biloba extract (EGb 761) also caused 
down‑ and up‑regulation of striatal glyceraldehyde‑3‑phosphate 
dehydrogenase and Bcl‑xl expression levels, respectively. These 
biochemical results, supported by the histopathological studies 
suggested neuroprotective role of EGb 761 in HD.[80]

Withania somnifera
Wi t han i a  s omni f e r a  ( WS ) ,  common l y  k n own 

Ashwagandha (Fam: Solanaceae), has been used since ages in 
Ayurvedic medicine to increase longevity and vitality.[81] The 
plant has reported for its antioxidant,[82,83] anti‑inflammatory,[84] 
immune‑modulating,[85] anti‑stress,[86] memory enhancing,[87] 
and anti‑convulsant properties.[88] As an antioxidant, WS and 
its active constituents (sitoindosides VII‑X and withaferin 
A) increase the levels of endogenous superoxide dismutase, 
catalase, and ascorbic acid, and decrease lipid peroxidation.
[83,89‑91] It acts as an anti‑inflammatory agent through inhibition 
of complement, lymphocyte proliferation, and delayed‑type 
hypersensitivity.[84] Various studies have shown that WS 
increase circulating cortisol, decrease fatigue, increase physical 
performance, and decrease refractory depression in stress.[92,93] 
It also modulates various neurotransmitter receptor systems 
in the CNS. Recently, WS has been found beneficial in 18 
clinically diagnosed Parkinson’s patients.[87,94]

Chemical analysis of Ashwagandha shows that it mainly 
contains steroidal lactones  (collectively known as 
withanolides) and alkaloids. The important withanolides 
isolated from plant are withaferin A, withanolide A, 
withanolide D‑P, withanone, sitoindoside VII‑X [Figure 2]. 
Various alkaloids that have been reported from WP 
are withanine  (major alkaloid), somniferine, somnine, 
somniferinine, withananine, pseudo‑withanine, tropine, 
pseudo‑tropine, 3‑a‑gloyloxytropane, choline, cuscohygrine, 
isopelletierine, anaferine, anahygrine, and anahydrine.[95‑98]

Role of GABAergic in the pathogensis of HD has been 
well documented and WS has been well reported to act 
by GABAergic system. WS root extract pretreatment 
significantly improved cognitive function, restored acetyl 
cholinesterase enzyme activity and glutathione enzyme 
level system in 3‑NP treated animals.[99,100] The root extract 
of WS exhibited possible neuroprotective effect against a 
3‑NP‑induced neurotoxicity in rats due to its GABAergic 
and antioxidant action and make it a suitable lead in the 
treatment of HD.[99,100]

Curcuma longa
Curcuma longa (CL), commonly known as Haldi or turmeric, 
is a perennial herb of family Zingiberaceae. Its rhizomes have 
been used since ages in the traditional medicinal system of 
India, China, Japan, and other South Asian countries.[101] It has 
a long history of use as a spice and a household remedy for the 
treatment of inflammation, skin diseases, wounds, and as an 
antibacterial and antiseptic.[102]

CL contains yellow coloring matter, various curcuminiods, 
sesquiterpenes, essential oil, and starch. Most of the 
curcuminiods are diarylheptanoid, a derivative of 
which curcumin is the major bioactive component. The 
other two curcuminoids are desmethoxycurcumin, and 
bis‑desmethoxycurcumin [Figure  2].[102,103] Curcumin has 
antioxidant,[104] anti‑inflammatory,[105] antifungal, antibacterial, 
antiparasitic, choleretic, analgesic, hepatoprotective, free 
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radical scavenging, iron chelating, antiviral,[102,106] and 
anti‑mutagenic activity.[107] Various mechanisms like direct 
scavenging activity of superoxide, hydroxyl radicals, metal 
chelating property[104,108,109] and ability to induce antioxidant 
enzymes (superoxide dismutase, catalase, glutathione 
peroxidase, glutathione‑S‑transferase, and hemeoxygenase) 
have been responsible for the antioxidant potential of 
CL.[110] Its anti‑inflammatory property may be related to its 
ability to inhibit upregulation of cyclooxygenase (COX)‑2. 
Furthermore, it showed neuroprotective action in various 
neurological disorders. Curcumin and manganese complex 
of curcumin offer protective action against vascular dementia 
by virtue of its antioxidant activity,[111,112] and is useful in the 
treatment of aging and memory dysfunctions.[113] Chronic 
administration of curcumin consistently improved body 
weight, reversed motor deficits, and increase SDH activity 
in 3‑NP treated rats. The improved 3‑NP‑induced motor 
and cognitive impairment along with a strong antioxidant 
property indicates that curcumin could be useful and can act 
as a lead molecule in the treatment of HD.[114]

Ginsenosides
Ginseng root is a well‑known herbal medicine and has 
been used as a representative tonic for over 2,000 years in 
the far eastern countries like China, Japan, and Korea.[115] 
Asian ginseng  (Panax ginseng C.  A. Meyer) and American 
ginseng  (Panax quinquefolium L.) belonging to family 
Araliaceae are the most common ginseng species.[116] Ginseng 
contains a series of tetracyclic dammarane triterpenoid 
saponin glycosides called, ginsenosides, which are active 
constituents of the drug.[117] Ginsenosides, depending on 
their structural differences, are classified into three categories: 
the panaxadiols (e.g., Rb1‑Rb3, Rc, Rd, Rg3, Rh2, and Rs1), 
panaxatriols (e.g., Re, Rf, Rg1‑2, and Rh1) and oleanolic acid 
derivatives (e.g., Ro).[118] Ginseng has been used primarily as 
a tonic to revitalize weak bodies and help the restoration 
of proper metabolism in the body. Various studies (in vitro 
and in  vivo) have exhibited beneficial effects of ginseng 
in several pathological conditions such as cardiovascular 
diseases, CNS disorders, cancer, immune deficiency, and 
hepatotoxicity. It has also been reported that ginseng and 
some of its active constituents also exert beneficial effects on 
aging and neurodegenerative diseases.[118,119] It also possesses 
antioxidant,[120] anti‑apoptotic,[120] anti‑inflammatory,[121] 
and immune‑stimulatory activities.[119] It also reduces lipid 
peroxidation, inhibits excitotoxicity, and Ca2+ over‑influx 
into neurons, maintains cellular ATP levels, preserves 
structural integrity of neurons, and increase cognitive 
performance. [119] Ginsenoside Rb1 and Rg3 have 
exhibited protective effects on cortical neurons against 
glutamate‑induced cell death by blocking Ca2+ influx through 
glutamate receptors.[122] Saponins from ginseng also inhibit 
both NMDA and glutamate‑induced increase Ca2+ levels in 
rat hippocampal neurons.[123] Ginsenosides Rb1, Rb3, and Rd 
have exhibited neuroprotective effect against 3‑NP‑induced 

striatal neuronal damage.[124,125] Ginsenoside Rb1, Rc, 
and Rg5 have shown to protect medium spiny neurons 
from glutamate‑induced apoptosis in genetically modified 
rodents. It has been hypothesized that neuroprotective 
effect of these ginsenosides could be due to their ability to 
inhibit glutamate‑induced Ca2+ responses in cultured spinal 
neuronal cultures.[126] Such reports strongly support that 
potential of ginseng and ginsenosides can be exploited in 
developing new therapeutics for the treatment of HD and 
other neurodegenerative disorders.

Centella asiatica (syn. Hydrocotyle asiatica)
Centella asiatica  (CA), commonly known as Gotu kola, 
Indian Pennywort and Jal brahmi, belongs to family 
Umbelliferae. It has been categorized as Rasayanas in 
Ayurveda due to its ability to improve memory and age 
related brain disorders.[127] Studies have shown various 
neuropharmacological effects of CA which comprises of 
memory enhancement,[128,129] increased neurite elongation 
and acceleration of nerve regeneration.[130] It also possesses 
anti‑oxidant property.[131,132] The most important chemical 
constituents from CA are triterpenoid saponins including 
asiaticoside, asiatic acid, madecassoside, and madecassic 
acid  [Figure  2].[133,134] Other saponins present in minor 
quantities are brahmoside and brahminoside.[133,135] Various 
triterpene acids, betullic acid, brahmic, and isobrahmic acid 
are reported from the plant.[133,135] The essential oil from the 
leaves of the plant contains monoterpenes, including bornyl 
acetate, α‑pinene, β‑pinene, and γ‑pinene.[136] Apart from 
these constituents flavones, sterols, and lipids have also been 
reported from CA.

CA attenuated the 3‑NP‑induced depletion of GSH levels, 
total thiols, and endogenous antioxidants in striatum and 
other brain regions.[137] It also exhibited protection against 
3‑NP‑induced mitochondrial dysfunctions viz., reduction 
in the activity of SDH, electron transport chain enzymes, 
and decreased mitochondrial viability.[137] The results of 
this study clearly indicate that the protective effect of CA 
against neuronal damage induced by OS and mitochondrial 
dysfunctions along with its memory enhancing activity can 
be helpful in controlling HD‑related impairments.

Flavonoids
Flavonoids are a group of polyphenolic compounds, distributed 
throughout the plant kingdom. They possess a common 
phenylbenzopyrone structure (C6‑C3‑C6).[138,139] Flavonoids 
exhibit several biological effects such as anti‑inflammatory, 
anti‑hepatotoxic, anti‑ulcer, anti‑allergic, and antiviral 
actions.[139‑141] They are potent antioxidants and have free 
radical scavenging abilities by virtue of their aromatic 
hydroxyl groups.[142,143]

Recent studies, both pre‑clinical and clinical, suggested that 
flavonoids prevent and delay neurodegeneration (especially in 
aged‑population), cognitive dysfunction, mood decline, and 
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oxidative pathologies.[144] They also exert protective action 
against peroxynitrite‑induced oxidative damage.[145] Flavonoids 
inhibit nitric oxide synthase (involved in neurodegenerative 
process including HD),[146‑148] cyclooxygenase expression,[147] 
protect against oxidative stress,[148] and modulate calcium 
homeostasis.[144] These polyphenols act by direct scavenging 
of various ROS and reactive nitrogen species.[144,149] 
Antioxidants have shown beneficial effects agains 3‑NP 
induced toxicity possibly by free radical scavenging 
activity  (decreases MDA and nitrite concentration) and 
increased endogenous antioxidant defense  (increased 
levels of superoxide, catalase, and glutathione).[99,150,151] 
Various flavonoides such as naringin,[149] hesperidin,[149] 
kaempferol,[152] and epigallocatechin gallate  (EGCG)[151,153] 
have been reported to provide beneficial effects against 
3‑NP‑induced neurotoxicity.

Celastrol
Celastrol  [Figure  2] is a triterpenoid quinone methide 
isolated from Tripterygium wilfordi  (Thunder of God 
vine) and Celastrus regelii belonging to the Celastraceae 
family, exhibits antioxidant  (15  times the potency of 
α‑tocopherol),[154] anti‑inflammatory,[155] anticancer,[156] 
and insecticidal[157] activities. It is known to prevent the 
production of pro‑inflammatory cytokines, inducible nitric 
oxide synthase, and lipid peroxidation. Celastrol attenuated 
the loss of dopaminergic neurons and dopamine depletion 
in MPTP  (1‑methyl‑4‑phenyl‑1,2,3,6‑tetrahydropyridine) 
treated rodents.[158] It also protect from 3‑NP‑induced striatal 
damage by regulating heat shock protein (hsp) gene expression 
in dopaminergic neurons.[158,159] The above reports indicate 
celastrol to be a promising neuroprotective agent against 
Parkinson’s disease and HD.

Trehalose
It is a non‑reducing disaccharide found in many organisms, 
including bacteria, yeast, fungi, insects, invertebrates, and 
plants. It is a natural hemolymph sugar of invertebrates 
and protects the integrity of cells by preventing protein 
denaturation due to various environmental stresses.[160,161] 
Though it is not synthesized in mammals, still it has exhibited 
various beneficial effects in them.[160] Various reports have 
shown that it inhibits amyloid formation,[162] aggregation 
of β‑amyloid,[163] polyglutamine (polyQ) 3‑mediated protein 
aggregation, and decreased Huntingtin aggregates‑induced 
toxicity. It also alleviated polyQ‑induced pathology in the 
R6/2 mouse model of Huntington disease by stabilizing 
the partially unfolded mutant protein.[164,165] It has also been 
reported that trehalose increase the autophagic activity 
against various aggregation proteins such as mutant 
Huntingtin, thereby, by providing neruoprotective activity 
against HD.[165] Hence, both properties of trehalose (inducer 
of autophagy and chemical chaperone) can be utilized in 
developing a new therapeutic agent for HD.[165]

Lycopene
It is a well‑known carotenoids present in considerable 
amounts in tomatoes and tomato‑based products.[166] 
Several studies have reported their therapeutic potential 
against oxidative stress and its related pathologies, 
including HD.[167,168] It has been reported to possess potent 
neuroprotective,[169] antioxidant,[170] antiproliferative, 
anticancer,[171] anti‑inflammatory,[172] memory enhancing,[173] 
and hypocholesterolemic activities.[174] Lycopene is 
more powerful carotenoid quencher of singlet oxygen 
with respect to vitamin E and glutathione.[174] Lycopene 
treatment significantly attenuated various behavioral 
and biochemical changes‑induced by 3‑NP, suggesting its 
therapeutic potential against HD‑like behavior.[175] The 
results of the study clearly indicated that lycopene exhibited 
its protected effect through its antioxidant property and 
nitric oxide pathway.[151,175]

Sesamol
Sesamum indicum Linn.  (Pedaliaceae), commonly known 
as sesame, has been used as a health food in India and 
other East Asian countries.[176] Sesamol  [Figure  2], one 
of the main constituents in sesame oil, is responsible for 
its antioxidant activity.[177] Sesamol has shown to control 
increased blood pressure, hyperlipidemia and lipid 
peroxidation (by increasing enzymatic and non‑enzymatic 
antioxidants),[176] and a strong antitumor action.[178] It 
has been reported that sesamol exhibited its protective 
effect through nitric oxide mechanism  (suppression of 
inducible nitric oxide synthase  (iNOS) expression).[179] It 
also attenuated 3‑NP‑induced Huntington‑like behavioral, 
biochemical, and cellular alterations in rodents.[180] It also 
protects against 3‑NP‑induced memory impairment,[150] 
oxidative stress, neuroinflammation in hippocampus 
neurons, and consequently improves synaptic plasticity 
and neurotransmission.[181] It also inhibits nitrite production 
and inducible NOS expression in the liver of septic rats.[182] 
Protective effect of sesamol against 3‑NP induced HD like 
symptoms can make it a lead molecule against HD. Detailed 
and mechanistic based studies are still warranted.

CONCLUSION

The above data clearly indicates that the oxidative stress 
plays a significant role in the pathophysiology of HD. 
Further, the plants having well established antioxidant 
and neuroprotective effects have shown beneficial effects 
against the symptoms of HD in both in vivo and in vitro 
studies. Still ample work is required to fully elucidate the 
mechanism of these plants and phytochemicals against HD. 
Furthermore, lot of other plants with significant antioxidant 
and neuroprotective potential can be explored for their 
protective effect against HD.
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