The genus *Gelsemium*: An update

V. Dutt, S. Thakur, V. J. Dhar, A. Sharma

Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, S.D. College of Pharmacy, Barnala, Swift School of Pharmacy, Rajpura, Punjab, University Institute of Pharmaceutical Science, Punjab University, Chandigarh, India

Submitted: 10-03-10

ABSTRACT

The review includes 103 references on the genus *Gelsemium*, and comprises ethnopharmacology, morphology, phytoconstituents, pharmacological reports, clinical studies and toxicology of the prominent species of *Gelsemium*. Alkaloids and iridoids constitute major classes of phytoconstituents of the genus. Most popular species of the genus are the Asian *G. elegans* and the two North American related species, *G. sempervirens* and *G. rankinii*. *Gelsemium* species are categorized under medicinal as well as poisonous plants. Amongst various species, *G. elegans* and *G. sempervirens* possess medicinal value, and have been traditionally used as nervous system relaxant. These plants have been explored exhaustively for their anticancer activity. In the concluding part, the future scope of *Gelsemium* species has been emphasized with a view to establish their multifarious biological activities and mode of actions.

Key words: Alkaloids, anticancer, gelsemium, iridoids

INTRODUCTION

The literature review on *Gelsemium* has been compiled using references from major databases such as Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, PubMed, King’s American Dispensatory, Raintree Nutrition Incorporation, Henriette’s Herbal Homepage, National Agricultural Library (AGRICOLA), Duke’s Phytochemical and Ethnobotany database, UK Cropnet Ethnobotany database, Archives of American Folk Medicine and USPTO Patent Full Text and Image database.

The available information on *Gelsemium* has been divided into six sections, that is, ethnopharmacology, morphology, phytoconstituents, pharmacological studies, clinical studies, toxicology, covering prominent species of *Gelsemium*. The ethnopharmacological section has been further subdivided into two sections, that is, traditional uses, and alternative and complementary medicinal uses. The reports, in which *Gelsemium* species have been used as domestic remedy by common men without any prescription for the treatment of various ailments, have been discussed under traditional uses. The subhead ‘alternative and complementary medicinal uses’ highlights *Gelsemium* species as medicine prescribed by medical practitioners for the treatment of various ailments. It also mentions uses for which *Gelsemium* species or their preparations are available in the market. Under every section, *Gelsemium* species have been arranged in an alphabetical order.

THE GENUS GELSEMIUM

Taxonomic classification

Kingdom: Plantae (plants)
Superkingdom: Tracheobionta (Vascular plants)
Superdivision: Spermatophyta (Seed plants)
Phylum: Embryophyta (Higher plants)
Class: Magnoliopsida (Dicotyledons)
Order: Gentianales
Family: Loganiaceae
Genus: Gelsemium
Species: elegans, rankinii, sempervirens

The genus *Gelsemium* belongs to family Loganiaceae, and comprises about five species that are widely distributed throughout Central America. *Gelsemium elegans*, known as Lemuan is an extremely poisonous plant that is indigenous to the South East Asian countries and found predominantly in Malaysia and Sarawak.[1-3] Most popular species of the genus are the Asian *G. elegans* and the two North American related species, *G. sempervirens* and *G. rankinii*. *Gelsemium* is a climbing plant with dark evergreen leaves and all parts are poisonous.[3-4]

ETHNOPHARMOCOLOGY

Traditional uses

Gelsemium elegans has been traditionally used as a nervous system relaxant to treat various types of pain including headache and
pain associated with inflammatory conditions.[5,6] Gelsemium is one of homeopathy’s important remedy for influenza.[7] Gelsemium sempervirens Ait. Syn. G. nitidum, commonly known as Yellow jasmine, has been used in the treatment of restlessness, mental irritability, insomnia, headache, irritation of the urinary tract, hyperemia and convulsions.[8] The roots of G. sempervirens have been used in the treatment of migraine, neuralgia, rheumatism, and in ovarian and uterine pain.[9] In the US, it has been extensively used as an arterial sedative and febrifuge in various fevers. It has been used in treatment of spasmodic disorders such as asthma and whooping cough. The plant has been used in hysteria, dysmenorrhea, chorea, pneumonia and bronchitis.[10]

Alternative and complimentary medicinal uses

An herbal preparation containing G. sempervirens has been used for evening cold and influenza.[11] Pharmaceutical formulations containing G. sempervirens as one of the constituents have been used for the treatment of psoriasis and neurodermatitis.[12] Nebery et al. reported that homoeopathic preparations, containing G. sempervirens in the form of sugar granules, are used in treating myopia of I, II or III degree.[13] Fluid extract of the plant has been used for its spasmolytic actions.[14]

MORPHOLOGY

Gelsemium includes three species of shrubs and climbers from United States and Central America and one species from China, South East Asia and Indo-Malaysia. Gelsemium elegans Benth. is a large, woody, evergreen climber with corky bark; leaves ovate or ovate-lanceolate; flowers golden yellow; sepals ovate, margin minutely ciliate; corolla funnel shaped, lobes imbricate in bud; ovules numerous in each cell; style filiform, at the apex with four short stigmatic branches.[15,16] Gelsemium sempervirens is a climbing shrub indigenous to the Southern United States from Virginia to Florida and Texas.[17] The plant is supplied commercially as segments of the cylindrical rhizome with attached wiry roots,[18] rhizome horizontal, the segments 3 to 20 cm in length and 3 to 30 mm in diameter, externally moderate brown to dark yellowish-orange, frequently spirally twisted, longitudinally wrinkled, with purplish-brown longitudinal lines and transverse fissures, upper surface with few stem scars, the under and lateral portions with several roots and root scars, fracture of rhizome tough, splintery, internally exhibiting a narrow purplish-brown bark, a broad, pale yellowish orange to light yellow, finely radiate and eccentric wood, a minute disintegrated pith; roots up to 20 cm in length and 2 to 8 mm thick, light brown, nearly smooth and wiry; fracture one-half transverse, the other oblique and splintery, fractured surface showing a broad, radiate, yellow wood and a thin bark.[19]

PHYTOCONSTITUENTS

A survey of literature reveals that alkaloid constitutes the major class of phytoconstituents in Gelsemium species. Table 1 summarizes phytoconstituents reported from various species of Gelsemium.

PHARMACOLOGICAL STUDIES

It has been reported that alkaloidal fraction isolated from G. elegans exhibits analgesic and anti-inflammatory activities.[20] A growth stimulant for pig has been prepared from gouwen (G. elegans) that served to promote nutrient absorption of organism, to increase immunity, and raise lean-to-fat pork ratio.[21] Cuéllar et al. reported that Gelsemium tincture at higher concentration inhibits dopamine, noradrenaline and serotonin uptake into synaptosomal preparations from different parts of the rat brain, whereas lower concentrations enhances noradrenaline and serotonin uptake into mesencephale preparation.[22] Methanol extract of G. elegans leaves exhibited high cytotoxicity against the human ovarian cancer cell lines CaOV-3 with an IC50 value of 5 µg/ml after 96 h of incubation while less toxicity against the human breast cancer cells MDA-MB-231 suggesting its selectivity towards CaOV-3 cells.[23] Uncarinic acid E, isolated from G. elegans, reported to exhibit antitumor effects due to its growth inhibitory activity for HepG2 cells in dose-dependent manner.[24] Gelsedine type alkaloids of G. elegans exhibited potent cytotoxic activity in an A431 human epidermoid carcinoma cell line.[25,26] Koumine (50 mmol/L) induced apoptosis of human colon adenocarcinoma LoVo cells in a time-dependent manner, and inhibited DNA synthesis in LoVo cells in vitro.[27] Koumine (20–320 µg/ml) dose dependently inhibited concanavalin A or phytohemagglutinin-induced proliferation of murine lymphocytes determined by MTT colorimetry.[28] It also decreased IL-2 level in the cell culture supernatant measured by enzyme-linked immunosorbent assay. Koumine showed remarkable inhibitory effect on mouse vaginal epithelial cell mitosis and promoted the formation of epidermal glandular layer in the scales at the mouse tail.[29] It also decreased serum IL-2 level in mice at concentrations 6, 30, 150 mg/kg. These activities infer that the therapeutic effect of Koumine against psoriasis is related to the inhibition of epidermal cell proliferation, promoting the formation of glandular cells and decreasing the serum level of IL-2. Koumine injection significantly decreased mouse spontaneous activity in moderate and high doses but did not produce any effect on the respiratory and cardiovascular system of dogs.[30]

Low doses of G. sempervirens and Atropa belladonna showed significant neurotropic and protective effects on behavioral and gastric alterations induced by foot shock stress in mice.[31] Ethanolic extract of G. sempervirens has been reported to increase the resistance of rabbits to pneumococcus toxin.[32] G. sempervirens alkaloidal fraction possessed anticancer activity as evidenced by significant inhibition of hepatic carcinoma HepG2 cells in vitro using crystal violet dyeing method.[33] Sempervirine nitrate, isolated from G. sempervirens, exhibited antimitotic activity in mice bearing several types of tumors.[34] Sempervirine has also been reported to possess vasoconstrictor action in the perfused isolated rabbit car. In an experiment performed by Hinsdale on isolated rat intestine, G. sempervirens produced an immediate relaxation of the intestine tissue.[35] G. sempervirens and Datura stramonium in appropriate concentration reported to prevent development of spontaneous seizures induced in rats by lithium or picrotoxin.[36]
CLINICAL STUDIES

Gouwen injection, prepared by using alkaloids extracted from *G. elegans* roots, has been reported to exhibit antitumor effect against esophageal cancer in humans.[80] An injection containing *G. sempervirens* extract as one of the ingredients when given to patients suffering from neurodermatitis, resulted in subsidence of itching associated with neurodermatitis after 1 week, disappearance of large erythema after 3–4 weeks and elimination of disease after 6 weeks.[81]

TOXICOLOGY

Gelsemium acts in the similar manner as nicotine and cocaine. Sometimes small doses of *G. sempervirens* can produce toxic symptoms.[9] A drachm of fluid extract of the plant can cause death, and 30 minims are dangerous. An alkaloid gelsemicine from *G. sempervirens* is toxic, and symptoms of toxicity are depressed respiration, tremors, paralysis of extremities, death, and 30 minims are dangerous. An alkaloid gelsemicine symptoms.[9]

Table 1: Phytoconstituents of various species of Gelsemium

<table>
<thead>
<tr>
<th>Species</th>
<th>Phytoconstituents</th>
</tr>
</thead>
</table>

Persons are reported to have been poisoned by eating honey gathered by the bees from *G. sempervirens* flowers. *Gelsemium* when administered to rabbits and guinea pigs produced a marked generalized congestion of all organs, depressive action on heart and respiration and severe toxic action on liver, kidney and testes. Histological studies showed neurological signs characterized by marked progressive weakness and convulsions culminating in death in three goats over a 24-h period after ingestion of *G. sempervirens* leaves.[90] Aqueous extract of the plant greatly depressed the activity of the isolated frog heart muscles.[91] It has been reported that single intravenous injection of gelsemine (0.2 mg/kg), isolated from *G. sempervirens*, in chloralosed dog produced a marked and prolonged decrease in blood pressure.[92] Alkaloids gelsemine, sempervirine and gelsemicine, isolated from *G. sempervirens*, increased the hypertensive action of adrenaline.[93] and inhibited the cholinesterases of nervous tissue and serum.[94] The drug is used as poison as it effects vary rapidly.[95,96]
Dutt, et al.: The genus Gelsemium: An update

Appendix (contd...)

17

18

19

20

21

22

23

24

25

26

27

Appendix (contd...)
Dutt, et al.: The genus Gelsemium: An update

Appendix (contd...)

28

29

30

31 R = H
32 R = OAc

33

34

35 R = H
36 R = OH
37

Appendix (contd...)
CONCLUSION

About 05 species of the genus Gelsemium have been reported in various floras. An exhaustive survey of literature revealed that information is available on 03 species. Among these 05 species, most of ethnopharmacological reports are available on G. elegans and G. sempervirens. Further, these plants [Table 1] have been investigated for their phytoconstituents.

Gelsemium sempervirens has been included in a number of herbal and homoeopathic formulations, which are in clinical use for the treatment of various ailments. Mother tinctures of the
plant are available in Indian market, and are frequently used for the treatment of CNS disorders, but no pharmacological work supports its efficacy in CNS disorders. Keeping in view the traditional, alternative and complimentary medicinal uses, and frequency of use in homoeopathic formulations, *G. sempervirens* seems to hold great potential for in-depth investigation on various biological activities, especially its effect on the central nervous systems.

A close scrutiny of literature on *Gelsemium* reveals that two species have been investigated pharmacologically. Pharmacological studies infer that *G. elegans* exhibits analgesic, antiinflammatory and cytotoxic properties; *G. sempervirens* exhibits neurotropic and antitumor activities. Koumine, gelsedine type alkaloids and uncarinic acid E have been considered bioactive constituents of *G. elegans*. Toxicological studies have confirmed high toxicity of *Gelsemium* species at higher doses. These plants have narrow therapeutic index, that is, margin between therapeutic efficacy and toxic value is very less. Although the plants of the genus *Gelsemium* hold great potential to be developed as antitumor drugs, their toxicity could not be ruled out.

ACKNOWLEDGMENTS

The authors are grateful to Mr. Bhupinder Singh Jauhar, Chairman, Guru Nanak Khalsa Group of Institutions, Yamuna Nagar for encouragement, financial assistance and providing laboratory facilities for carrying out this research work and to Dr. R.P. Kapoor and Dr. P. Das for their insight on the work.

REFERENCES

33. Yang JS, Chen YW. Chemical studies on the alkaloids of Hu-
release of cytochrome C. Biol Pharm Bull 2006;29:1639-44.

87. Peredery O, Persinger MA. Herbal treatment following post-seizure induction in rat by lithium pilocarpine: Scutellaria lateriflora (Skullcap), Gelsemium sempervirens (Gelsemium) and Datura stramonium (Jimson Weed) may prevent development of spontaneous seizures. Phytother Res 2004;18:700-5.

Source of Support: Guru Nanak Khalsa Group of Institutions,
Conflict of Interest: None declared