Phytochemical and Pharmacological Potential of **Hygrophila spinosa**

T. Anders

Arjun Patra1*, Shivesh Jha2, P. Narasimha Murthy3

1 Department of Pharmacognosy and Phytochemistry, College of Pharmacy, IFTM, Moradabad- 244 001, U.P., India
2 Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra-835 215, Ranchi, Jharkhand, India.
3 Department of Pharmacognosy and Phytochemistry, College of Pharmacy, IFTM, Moradabad- 244 001, U.P.

ABSTRACT

Hygrophila spinosa T. Anders (Acanthaceae) is described in Ayurvedic literature as Ikshura, Ikshugandha and Kokilasha “having eyes like Kokila or Indian cuckoo”, common in moist places on the banks of tanks, ditches, paddy fields etc., widely distributed throughout India from Himalayas to Ceylon, Sri Lanka, Burma, Malaysia and Nepal. Seeds, whole plant, leaves, roots and ash of the plant are predominantly used for the treatment of various ailments. The compounds identified in *H. spinosa* are mainly phytosterols, fatty acids, minerals, polyphenols, proanthocyanins, mucilage, alkaloids, enzymes, amino acids, carbohydrates, hydrocarbons, flavonoids, terpenoids, vitamins and glycosides. Some of the reported phytoconstituents are lupeol, lupenone, 25-oxo-hentriacontanyl acetate, stigmasterol, betulin, β-carotene, hentriacontane, apigenin-7-O-glucuronic acid, apigenin-7-O-glucoside, 3-methylmonacosane, 23-ethylcholesta-11(12), 23(24)-diene-3β-ol, luteolin, asteracanthine, asteracanthicine, luteolin-7-rutinoside, methyl-8-n-hexyltetracosanoate, β-sitosterol, histidine, phenylalanine, lysine, ascorbic acid, nicotinic acid, n-triacontane, glucose, mannose, rhamnose, arabinose, xylose, maltose, myristic acid, oleic acid, palmitic acid, stearic acid, linoleic acid etc. Ethanolic extract of the fruits, hydroalcoholic extract of whole plant and crude petroleum ether extract of the plant are having anticancer activity. Antibacterial activity was exhibited by the chloroform and methanol extract of the whole plant, and methanolic extract of the leaves. Antifungal activity against *Aspergillus tamari*, *Rhizopus solani*, *Mucor mucido* and *Aspergillus niger* is due to the proteins and peptides present in the plant. Potential in treating liver diseases of the aerial parts, roots and whole plant was studied by various models viz. carbon tetrachloride induced hepatotoxicity, paracetamol and thioacetamide intoxication, and galactosamine induced liver dysfunction in rats. Seeds, leaves, aerial parts and roots showed antinociceptive activity which was studied using both chemical and thermal methods of nociception in mice. Some Ayurvedic, Unani and Siddha formulations of the plant are claimed to have anabolic-cum androgenic like activity. The plant was also studied for haematopoetic, hypoglycemic, anti-inflammatory, antioxidant, hypotensive, diuretic, macrofilaricidal activities etc. Apart from the above established studies the plant is traditionally used for the treatment of asararica, diseases of urinogenital tract, dropsy of chronic Bright’s disease, hyperdipsia, vesical calculi, flatulence, diarrhea, dysentery, leucorrhoea, gonorrhoea, asthma, blood diseases, gastric diseases, painful micturition, menorrhagea etc. Therefore, these informations will help the scientists and researchers to screen the compounds responsible for different bioactivities and to elucidate the mechanism of action.

Keywords: Acanthaceae, Anticancer, Flavonoids, Hygrophila spinosa, Phytosterols

INTRODUCTION

Medicinal and aromatic plants constitute a major segment of the flora, which provides raw materials for use in the pharmaceuticals, cosmetics, and drug industries. The indigenous systems of medicines, developed in India for centuries, make use of many medicinal herbs. In one of the study of the World Health Organization, it is estimated that 80 per cent of the population of developing countries relies on traditional plant based medicines for their health requirements (1-4). Even in many of the modern medicines, the basic composition is derived from medicinal plants and has become acceptable for many reasons that include easy availability, least side effects, low prices, environmental friendliness and lasting curative property. The World Health Organization (WHO) has defined traditional medicine as “the sum total of all the knowledge and practices, whether explicable or not, used in diagnosis, prevention and elimination of physical, mental or social imbalance and relying exclusively on practical experience and observation handed down from generation to generation, whether verbally or in writing” (1). All traditional medicines have their roots in folk medicines and household remedies. WHO has listed 20,000 medicinal plants used in different parts of the world. Other estimates indicate the number to range between 35,000 and 70,000 worldwide (5, 6). Plant derived products are present in 14 of the 15 therapeutic categories of pharmaceutical preparations, which are currently recommended to medical practitioners in U. K. and they form an important part of
health care system in the western world (7). There are several factors for the continued popularity of traditional drugs and one is their ready availability as compared to the modern medicines besides the adverse effects of synthetic drugs (8).

Plants can, therefore, be described as the major source of medicine, not only as isolated active principles to be dispensed in standardized dosage forms but also as crude drugs for the population of developing countries. World Health Organization (WHO) has stressed the need to promote the indigenous systems of medicine among the rural population of the Third World Countries (9). This has led to an awareness of alternative systems of medicine, still practiced and found satisfactory by three-quarters of the world's population. On the other hand, the revival interest in herbal medicine as a system of natural cure has emerged as a new trend in the west.

Many drugs of modern medicine have had their origin in traditional medicine. Some common examples include the discovery of the alkaloid diosgenin in Dioscorea deltoides used as source for the partial synthesis of cortisone and steroid hormones in the forties, the discovery of the hypotensive alkaloid reserpine in Rauvolfia serpentina and the analgesic alkaloid aspirin in Filipendula ulmaria in the fifties, the discovery of the antiasmatic alkaloid ephedrine in Euphrasia sinica and the anticancer alkaloid podophyllotoxin in Podophyllum hecandra in the sixties, etc.

The plant Hygrophila is an angiospermic plant belonging to the family Acanthaceae. The family comprises of a number of genus and species having medicinal value and they are usually perennial herbs or shrubs, rarely trees; some are lianes, xerophytes, aquatica, or mesophytes. From related families, the plants of Acanthaceae are distinguished by a number of characters, notably the presence of cystolith in vegetative organs, the presence and development of floral bracts and bracteoles, usually bilabiate corollas associated with the bilocular ovary, pointed, 4-8 seeded, ovate-quadrate, black, compressed, pubescent, filiform. Capsules 8 mm long, linear-oblong, hairy on the back, and with hyaline ciliate margins. The plant are Kakilakshya, Ikshugandha, Ikshura, Kokilaksha, Kokilanyana, Kshura, Kshuraka, Vajra, Gokhulajanam, Katireiki, Ikki, Tal-makhana, Talimkhana, Gokshura, Talimkhana, Kuliakhara, Kantiakalika, Nirmalli, Vayalchulli, Nirmulli, Neremulli, Nirumalli, Kettu, Nirguviveru, Nerugobbi, Neerugobbi, Nirguviveru, Kokilaksamu, Kantakulika, Kalavankabija, Eyitror, Ekharo, Dayingiwa, Kolavalike, Kolavali, Kolarind, Soopadan, Long-leaved barleria etc (15-17, 19-22, 25-30). The various common names/vernacular names of the plant are Kakilakshya, Ikshugandha, Ikshura, Kokilaksha, Kokilanyana, Kshura, Kshuraka, Vajra, Gokhulajanam, Katireiki, Ikki, Tal-makhana, Talimkhana, Gokshura, Talimkhana, Kuliakhara, Kantiakalika, Nirmalli, Vayalchulli, Nirmulli, Neremulli, Nirumalli, Kettu, Nirguviveru, Nerugobbi, Neerugobbi, Nirguviveru, Kokilaksamu, Kantakulika, Kalavankabija, Eyitror, Ekharo, Dayingiwa, Kolavalike, Kolavali, Kolarind, Soopadan, Long-leaved barleria etc (15-17, 19-22, 25-30).

The botanical classification of the plant is:

Kingdom
Plantae

Phylum
Tracheobionta

Division
Vascular plants

Class
Asteridae

Family
Acanthaceae-Acanthus family

Genus
Hygrophila

Species
spinosa

Description of Hygrophila spinosa

Hygrophila spinosa (Acanthaceae) is described in Ayurvedic literature as Ikshura, Ikshugandha and Kokilasha “having eyes like Kokila or Indian cuckoo”, common in moist places on the banks of tanks, ditches, paddy fields etc., widely distributed throughout India from Himalayas to Ceylon, Sri Lanka, Burma, Malaysia and Nepal (15, 19-22).

It is a stout herb with numerous fasciculate usually unbranched subquadrangular erect stems, 0.6-1.5 m high, thickened at the nodes, more or less hispid with long hairs, especially below each node. Leaves sparsely hispid on both sides, tapering at the base, sessile, in verticils of 6 at a node, the 2 outer leaves of the whorl larger, reaching 18 by 1.3-3.2 cm, oblong-lanceolate or oblanceolate, the 4 inner leaves (two on each side) reaching about 3.8 cm long, each of the 6 leaves with nearly straight sharp yellow spine, 2.5-4.5 cm long, in its axil. Flowers in whorl of 8 (in 4 pairs) at each node; bracts about 2.5 cm long, like the leaves, lanceolate, hairy and ciliate; bracteoles 2 cm long, linear-lanceolate, with hyaline margin in the lower part, hairy and ciliate with long white hairs. Calyx 4 partite; upper sepal 1.6-2 cm long, broader than the other 3, which are 1.3 cm long, all linear lanceolate, coarsely hairy on the back, and with hyaline ciliate margins. Corolla purple-blue, reaching 3.2 cm long, widely 2-lipped; tube 1.6 cm long, abruptly swollen at the top; lips subequal, 1.6 cm long, the upper lip 2-fid with oblong truncate lobes, the lower lip with 2 entire crest like longitudinal folds or callosities on the palate, deeply 3-lobed, the lobes oblong or slightly obovate, rounded or truncate. Filaments quite glabrous, one short and one long filament of each pair united at the base. Style slightly pubescent, filiform. Capsules 8 mm long, linear-oblong, pointed, 4-8 seeded, ovate-quadrate, black, compressed, hygroscopically hairy and 0.3 x 0.2 cm (Figure 1) (16-17, 22-27). The various common names/vernacular names of the plant are Kakilakshya, Ikshugandha, Ikshura, Kokilaksha, Kokilanyana, Kshura, Kshuraka, Vajra, Gokhulajanam, Katireiki, Ikki, Tal-makhana, Talimkhana, Gokshura, Talimkhana, Kuliakhara, Kantiakalika, Nirmalli, Vayalchulli, Nirmulli, Neremulli, Nirumalli, Kettu, Nirguviveru, Nerugobbi, Neerugobbi, Nirguviveru, Kokilaksamu, Kantakulika, Kalavankabija, Eyitror, Ekharo, Dayingiwa, Kolavalike, Kolavali, Kolarind, Soopadan, Long-leaved barleria etc (15-17, 19-22, 25-30).
Figure 1: Morphological characters of Hygrophila spinosa

A, flowering shoot; B, Arrangement of leaves at node; C, Leaves; D, Spines of the plant and their arrangement at the node

<table>
<thead>
<tr>
<th>Part of the Plant</th>
<th>Used (as/in)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roots</td>
<td>Diuretic, jaundice, dropsy, rheumatism, anasaraca, diseases of urinogenital tract, gonorrhoea, cooling, bitter tonic, demulcent, refrigerant, antitumour, snake bite, anti-inflammatory, dropsy of chronic Bright's disease, ascites, hyperdipsia, strangury, flatulence, dysentery, leukorrhoea</td>
<td>(15-17, 19, 25-27, 43-50)</td>
</tr>
<tr>
<td>Seeds</td>
<td>Gonorrhoea, spermatorrhoea, jaundice, dropsy, rheumatism, anasaraca, diseases of urinogenital tract, tonic, aphrodisiac, cooling, acid, bitter, sedative, constipating, antipyretic, diseases of the blood, diuretic, impotence, general debility, demulcent, nutritive, aromatic, stimulant, asthma, diarrhoea, leucorrhoea, refrigerant, liver tonic, rejuvenating, lithotritypic, nerve tonic, anaemia, dysentery, strangury, renal and vasical calculi, arresting abortion, lithiasis</td>
<td>(12, 15, 17, 19, 25-26, 29-30, 41, 47, 51-62)</td>
</tr>
<tr>
<td>Leaves</td>
<td>Diuretic, jaundice, dropsy, rheumatism, anasaraca, diseases of urinogenital tract, leucor, sweet, sour, bitter, tonic, oleaginous,</td>
<td>(12, 15, 17, 19, 22, 25, 27, 30, 47, 63-65)</td>
</tr>
</tbody>
</table>
aphrodisiac, hypnotic, diarrhoea, dysentery, urinary calculi, urinary discharge, anti-inflammatory, joint pain, biliousness, eye disease, ascites, abdominal troubles, anaemia, anuria, gleet, cough, demulcent, stomatchic, lumbaro, arthritis, gastric disorder, leucorrhoea.

Whole plant
- Antibacterial, dysurea, painful micturition, tonic against debility, (12, 15, 27, 41, 48-49)
- Hepatoprotective

Flower
- Leucor

Aerial part
- Body pain, jaundice, malaria (56)

Fruits
- Menorrhagia

The plant
- Diuretic, cancer, tubercular fistula, anaemia, hepatoprotective, diabetes, dysentery, dropsy, rheumatism, anasarca, diseases of urinogenital tract, aphrodisiac, haematinic, antifungal, spasmolytic, hypertensive, antidiabetic

Ashes of plant
- Diuretic, dropsy, gravel

ETHNOMEDICINE

The various Ayurvedic properties of the drug are: Rasa-Madhura, Amla, Tikta; Guna- Pitibhila, Snigdha; Veerya-Sheeta; Vipaka- Madhura; Doshaghana- Vatapittashamaka; Rogaghnta- Nadidaurbalya, Vatarakta, Vatavyadhi, Kamala, Jala, Yakritdudara, Anaha, Udararoga, Pittashmari, Srotaha, Kasa, Shukradaurbalya, Klaibya, Moolvrikchchhara, Ashmari, Bastisbotha, Daurbalya, Karma- Nadibalya, Santarpanta, Yakriduttejaka, Raabha, Anulomana, Srotahara, Stanyaganana, Moordala, Vrshya, Vajikara, Shukrashodhamana, Bala, Brinbana (17). Its uses in Ayurveda and Siddha are: Mathuramalarasa; diuretic, aphrodisiac, pandu, dropsy, scanty urine, ascites; seeds are premeham and athisaram (15, 20).

In Unani system of medicine it is Hot 1°, Dry 1°; seeds are aphrodisiac, nutritive; leaves are diuretic, externally for lumbago and rheumatism (15). It is a source of the Ayurvedic drug ‘Kokilaaksha’ (31), Unani drug ‘Talmakhana’ (32) and Siddha drug ‘Neermulli’ that are claimed to have anabolic-androgenic activity (33). The plant is used as antitumour (34), hypoglycemic (35) antibacterial (36-37), hepatoprotective (38), low moluscicidal against Bulinus truncates (16), demulcent, aphrodisiac and diuretic. The aerial part and root are used in herbal preparations (39-40). The dose of the plant used in powder form is 3 to 6 gm (28, 29, 41) and various parts of the plant used are the whole plant, seeds, roots, leaves and ashes of the plant (15, 17, 28, 42). Different morphological parts of the plant used traditionally for the treatment of various ailments are listed below (Table 1).

CHEMICAL CONSTITUENTS

Root of the plant contains essential oils (17, 25, 28), alkaloids (15), waxy substances, gum (19), minerals as Ca, Mg, K, Fe, Cu, Zn, Mn, Co & Cr (72) and phytosterols (17); alkaloids and sterols are present in the aerial parts (12); Seeds contain mucilage, potassium salts, diastase, lipase, protease (15, 17, 25-28, 73-74), sterols (1, 27, 29, 73, 75-77), alkaloids, fixed oils (15), fatty acids (78) and minerals like Ca, Mg, K, Fe, Cu, Zn, Mn, Co & Cr (72); Whole plant contains essential oil (12), a straight chain ketone (79) and alkaloids (28); Leaf contains proteins, nitrogen, polyphenols (80), minerals as Ca, Mg, K, Fe, Cu, Zn, Mn, Co & Cr (16), alkaloids, mucilage, potassium salts, sugars, purine alkaloid (19, 75-76, 84), flavonoids, terpenoids (85), manganese salts, potassium chloride & sulphate, fixed oils (84) are reported in the plant without any specification of the morphological part of the plant and ash from the root contains potassium salts (19). Some of the phytoconstituents of the plant are summarized in Table 2.

Table 2: Chemical Constituents of Hygrophila spinosa

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Structure</th>
<th>Isolated from Part of Plant</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myristic acid</td>
<td></td>
<td>Seed</td>
<td>(15, 19, 29, 86-88)</td>
</tr>
<tr>
<td>Palmitic acid</td>
<td></td>
<td>Seed</td>
<td>(15, 17, 19, 29, 73, 83-84, 86-88)</td>
</tr>
<tr>
<td>Stearic acid</td>
<td></td>
<td>Seed</td>
<td>(15, 17, 19, 29, 73, 86-88)</td>
</tr>
</tbody>
</table>

333
Phytochemical and Pharmacological Potential of Hygrophila spinosa T. Anders

Linoleic acid

Seed (15-17, 19, 29, 83-84, 86-88)

Lupenone

Root (89)

25-oxo-hentriacontanyl acetate

Plant, Aerial part (17, 90-91)

Alkaloid (Hygrosterol) --- Root (92)

Lupeol

Aerial part, Root, Leaf, Stem, Whole plant, Seed (17, 19, 27, 41, 75-76, 78-79, 83-85, 89, 91, 93-96)

Stigmasterol

Aerial part, Whole plant, Leaf (17, 27, 41, 78-79, 83-85, 93)

Betulin

Aerial part, Root (17, 78, 83-84, 90, 93)

β-carotene

Leaf (80, 97)

Phytosterol (Hygrosterol) ---

Root (19)

Maltose

Root (19)

Oleic acid

Seed (17, 19, 29, 83-84, 86-88)

Hentriacontane

Leaf, Stem (19, 76)
Xylose

Glucuronic acid

Apigenin-7-O-glucuronide

Apigenin-7-O-glucoside

3-methylnonacosane

23-ethylcholesta-11(12), 23(24)-dien-3 β-ol

Maltose

Asteracanthine

Asteracanthicine

Luteolin

Luteolin-7-rutinoside

Methyl-8-n-hexyltetraicosanoate

Rhamnose
Arabinose

β-sitosterol

Histidine

Phenylalanine

Lysine

Polysaccharides

Ascorbic acid

Nicotinic acid

n-triacontane

Glucose

Mannose

Vanillic acid

Syringic acid

Apigenin

PHARMACOLOGICAL STUDIES

Hussein Ayoub et al. (101) studied the anticancer activity of ethanolic extract of the fruits of *Asteracantha longifolia* (L.) Nees using the KB test system and the ED₅₀ found was more than 1 µg/ml in the KB cell culture. Further the antitumor activity in Ehrlich ascites carcinoma and...
sarcoma-180 bearing mice of the petroleum ether extract of the roots of *Hygrophila spinosa* T. Anders was also studied (102). The extract showed decrease in packed cell volume, increases life span of EAC/S-180 bearing mice in a day dependent manner and also inhibited the rapid increase of body weight of tumor bearing mice. Sub-acute toxicity study of the hydroalcoholic extract of the whole plant of *H. spinosa* showed no significant change in body weight, organ weight (heart, kidney, liver, lung and spleen) and serum biochemical parameters. The LD₅₀ was found to be 3020 mg/kg body weight. The tumor reducing potency of the extract (300 mg/kg body weight) in DMBA (7, 12-Dimethylbenz (a) anthracene) induced mammary tumor in female rats was assessed by recording the reduction in tumor weight (103).

Chloroform extract of the whole plant of *A. longifolia* (L.) Nees is active against *Bacillus subtilis* NCTC 8236, *Staphylococcus aureus* NCTC 6447, *Pseudomonas aeruginosa* NCTC 6750 and *Escherichia coli* NCTC 8196; methanol extract is active against *B. subtilis* and *S. aureus*, but aqueous extract is not active against the above four strains (104).

Petroleum ether extract of the roots of *H. spinosa* has no sedative-hypnotic action, but when administered i.p. to mice, significantly potentiated the sleeping time of chlorpromazine, diazepam, pentobarbitone, chloridiazepoxide and protected against strychnine-induced convulsions (105). Ethanolic extract and its chloroform fraction of the aerial parts of *Asteracentha longifolia* (L.) Nees shows promising hepatoprotective activity, but the aqueous extract and methanol fraction of the ethanolic extract were inactive (106). The ethanolic extract and its chloroform fraction significantly reduced different enzyme levels like serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase and serum bilirubin in carbon tetrachloride induced hepatotoxicity in rats; also reduced the morphological parameters in liver (liver weight and liver volume). Further Sen et al (107) reported that the leaf extract (3 teaspoon, twice daily for 7 days) of *H. auriculata* (K. Schum) Heine (Acanthaceae) commonly known as ‘Kuilekha’ is used for treatment of jaundice by the local people at Bargah district, Orissa, India. The methanolic extract of *H. auriculata* also protects the liver against paracetamol and thioacetamide intoxication in rats (108). The acute toxicity of the aqueous extract of the roots of *H. auriculata* was evaluated by administering the extract orally to different groups at the dose level of 250, 500, 1000 and 2000 mg/kg body weight. All animals were observed for toxic symptoms and mortality for 72 hrs. No mortality was observed up to a dose level of 2000 mg/kg body weight. As per the ranking system European Economic Community (EEC) for acute oral toxicity, the LD₅₀ dose of 2000 mg/kg and above is categorized as unclassified (EC Directive 83/467/EEC, 1983). The extract has significant hepatoprotective and antioxidant activities in CCl₄ induced liver toxicity in rats. The extract significantly decreased the alanine transaminase, aspartate transaminase, alkaline phosphatase, lactate dehydrogenase and total bilirubin in the treated groups as compared to the control. The in vitro antioxidant activity was studied using ferric thiocyanate (FTC) and thiobarbituric acid methods (109). Again Usha et al (110) have reported the hepatoprotective activity of the aqueous extract of the roots of *H. spinosa* at a dose of 200 mg/kg body weight, orally in CCl₄ induced liver damage in rats. They analysed the levels of some known antioxidant (both enzymic and non enzymic) activities and histopathological studies to find out the hepatoprotective activity.

The anti-nociceptive activity of the aqueous extract of leaves, aerial parts and roots of *H. auriculata* was studied using both chemical and thermal methods of nociception in mice. The extracts at 100 and 200 mg/kg body weight doses inhibited the abdominal constrictions induced by acetic acid and also increased the pain threshold of mice towards the thermal source. The activity was comparable to standard drug aspirin (111-112).

Petroleum ether extract of the roots of *H. spinosa* at a dose of 40 mg/kg body weight (i.p.) once weekly for four weeks has changed serum aminotransferase, alkaline phosphatase and cholesterol. Higher dose (80 mg/kg body weight) changed all the above parameters in mice including total bilirubin, nonprotein nitrogen, blood urea, plasma protein and WBC count, but low dose (20 mg/kg body weight) does not exhibit appreciable action. In daily treatment for one month, high dose (8 mg/kg body weight) slightly affects liver and kidney functions and metabolism (alteration takes place in case of transaminase, alkaline phosphatase and serum cholesterol) and hematological parameters (only WBC). Low (2 mg/kg) and moderate (4 mg/kg) doses do not produce any significant toxic action (113).

Ethanolic extract of the aerial parts of *H. spinosa* at 100 and 200 mg/kg body weight orally increases the haemoglobin, haematocrit, RBC and total WBC as compared with vehicle treated control rat haemogram. In anemic rats, the extract increases haemoglobin, haematocrit, and RBC count, but decreases serum iron and serum total iron binding capacity as compared with vehicle treated anemic control rats (114). Pawar et al reported the LD₅₀ and haematopoietic activity of the petroleum ether extract of the leaves of *A. longifolia* in rats (115). For LD₅₀ study the extract was administered i.p., in doses of 250, 500, 750, 1000, 1250, 1500 mg/kg of body weight in different groups of animals. The LD₅₀ studies revealed that albino rats tolerated a considerable high dose of the extract (1000mg/kg body weight, i.p.), without any manifestations. Haematological parameters were evaluated in the anemic animal model and it was found that the extract significantly increases the haematological parameters (erythrocyte count, leukocyte count, haemoglobin and haematocrit value).
The plant is having anti-convulsant, antineoplastic, hepatoprotective, antifungal, antispasmodic, anti-inflammatory, diuretic, moderate antipyretic, hypotensive, vasodilatory, anabolic cum androgenic like activity, bronchodilatory, antitumor promoting activity against chemically induced hepatocarcinogenesis in wistar rats. Administration of Kokilasha (*A. longifolia*), 8-10 gm (in divide doses) orally with milk or sugar for 3 months to fifty infertile couples with males suffering from oligospermia, necrospermia, less motile and unhealthy sperms showed appreciable change in viability after one month of treatment, including some change in morphological character of the sperm. In the 2nd month the semen analysis showed considerable improvement in number and motility and immaturity reduced. After three months of treatment normospermia developed in 80% of patients (17).

Methanolic extract of the seeds of *H. auriculata* showed potent inhibitory action against leukotriene B4 biosynthesis in isolated bovine polymorphonuclear leukocytes (127). Ethanol and distilled water extract of the plant exhibited significant anti-inflammatory activity, whereas significant analgesic activity was shown by petroleum ether and ethanol extract, when compared with respective controls and were comparable with those of standard drugs diclofenac sodium and analgin in albino rats and mice at a dose of 400 mg/kg body weight, orally (128).

The crude petroleum ether extract of *H. spinosa* was found to possess low toxicity (LD50 1 gm/kg in mice) and effectively arrested neoplastic growth in swiss mice. The associated pathologic changes in blood cell counts and haemoglobin content due to oncogenesis in the host returned to almost normal by drug treatment. Treatment of the test animals with the drug, previously inoculated with 3 different strains of tumour cells in mice, resulted in the inhibition of tumour growth in all three cases. The drug significantly increased the life span in Daton’s lymphoma treated mice (129). The plant is also used for the treatment of urticaria (130) and one homeopathic medicine of the plant administered @ 3X twice a day cured a patient suffering from Hairy Cell Leukemia. The recovery was rapid and blood count stabilized; also there was relief from headache, red nodular urticarial eruption and insomnia (131).

The antifungal activity of *H. auriculata* extract against *Aspergillus tamari*, *Rhizopus solani*, *Mucor muscoides* and *Aspergillus niger* is due to the proteins and peptides present (132). The methanolic extract at 30 µg/ml dose is effective against *Enterobacter aerogenes*, *Staphylococcus aureus* and *Burkholderia pseudomallei* (81). The aqueous and ethanolic extract of the whole plant of *A. longifolia* shows hepatoprotective activity against galactosamine induced liver dysfunction in rats. The activity was assessed by examination of blood biochemistry and histopathological studies of liver (133). Also the methanolic extract of the plant is an effective inhibitor of oxidative stress and
oxidant induced post necrotic proliferation in rat liver (134).

CONCLUSION

H. spinosa is widely distributed throughout India and is used for the treatment of cancer, arthritis, hepatotoxicity, inflammation, blood diseases, diabetes, fever, constipation, bacterial infection etc. The plant is also used as antioxidant, diuretic, hypotensive and macrofilaridical, but the mode of action of for different bioactivities are not studied in detail. _H. spinosa_ contains various phytoconstituents viz. alkaloids, glycosides, steroids, flavonoids, terpenoids, mucilage etc. which may be responsible for the different pharmacological activities. Hence, we can isolate some pure phytopharmaceuticals which in turn can be used as lead molecules for synthesizing novel agents having good therapeutic activity.

With regard to the development of quality herbal medicine the standardization of extracts, phytopharmacology of different extracts, isolation and characterization of active phytopharmaceuticals, elucidation of mechanism of action of the isolated compounds and clinical trial of the compounds are much needed. In the changing global scenario the interest towards plants with medicinal value is increasing substantially in the primary healthcare system both in the developed and developing countries. Therefore, the informations will help the scientists and researchers to screen the compounds responsible for different bioactivities, and to elucidate the molecular mechanism of action.

REFERENCES

40. The Wealth of India, (Publication & Information Directorate, CSIR, New Delhi, 1948) 133.

27. *Phytochemical Investigation of Certain Medicinal Plants used in Ayurveda, (Central Council for Research in Ayurveda and Siddha, New Delhi, 1999)*.
Hygrophila spinosa

Asteracantha longifolia

U.K. Mazumdar, M. Gupta and S. Maiti. Haematinic effect of

T. Anderson on experimental rodents.

A. Gomes, M. Das and S.C. Dasgupta. Haematinic effect of

on haematological parameters in rats.

Asteracantha longifolia

Expt. Biol

performance and hormone levels in alcohol exposed and normal

and antimotility activities of leaves of

U.K. Mazumdar, M. Gupta and S. Maiti. Effect of petroleum ether

Pharmacologyonline

hepatorenal functions in mice.

P. Shanmugasundaram and S. Venkataraman. Hepatoprotective

thioacetamide intoxication in rats.

R.J. Thanki and K.A. Thaker. Studies on amino acid composition of

the seeds of the plants A. longifolia and C. trilocularis. J. Institute

S.M. Hussein Ayoub and A.I. Babiker. Screening of plants used in

Sudan folk medicine for anticancer activity. Fitoterapia. LV: 209-12

1984).

U.K. Mazumdar, M. Gupta, S. Maiti and D. Mukherjee. Antitumor

activity of Hygrophila spinosa on Ehrlich ascites carcinoma and

S.P. Pattanayak and P. Sunita. Antitumor potency and toxicology of

an Indian Ayurvedic plant, Hygrophila spinosa. Pharmacognosyline.

T. Geerha and P. Varalakshmi. Effect of lupeol and lupeol

linoleate on lysosomal enzymes and collagen in adjuvant-induced

S.B. Maiti, M. Gupta and U.K. Mazumder. Antineoplastic effect of

the root extract of Hygrophila spinosa. International Conference on

S. Shalajaj, N. Chandra, R.T. Sure and S. Menon. Effect of

Asteracantha longifolia Nees. Against galactosamine induced liver

99. S.R. Surange and V.A. Phatank. Pharmacognostic studies on root of

Hygrophila auriculata Heine. J. Univ. Poona Sci. Tech. 54: 211-16

100. R.J. Thanki and K.A. Thaker. Studies on amino acid composition of

the seeds of the plants A. longifolia and C. trilocularis. J. Institute

101. S.M. Hussein Ayoub and A.I. Babiker. Screening of plants used in

Sudan folk medicine for anticancer activity. Fitoterapia. LV: 209-12

1984).

activity of Hygrophila spinosa on Ehrlich ascites carcinoma and

103. S.P. Pattanayak and P. Sunita. Antitumor potency and toxicology of

an Indian Ayurvedic plant, Hygrophila spinosa. Pharmacognosyline.

106. T. Geerha and P. Varalakshmi. Effect of lupeol and lupeol

linoleate on lysosomal enzymes and collagen in adjuvant-induced

108. S.B. Maiti, M. Gupta and U.K. Mazumder. Antineoplastic effect of

the root extract of Hygrophila spinosa. International Conference on

112. S. Shalajaj, N. Chandra, R.T. Sure and S. Menon. Effect of

Asteracantha longifolia Nees. Against galactosamine induced liver
