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ABSTRACT
Neuropsychiatric and neurodegenerative conditions are widespread across the globe, frequently 
linked to disturbances in monoaminergic transmission, increased cortical excitability, and 
maladaptive responses to stress. Existing pharmacological treatments are often hindered by 
delayed onset of action, limited effectiveness, and adverse side effects. This narrative review 
provides a critical examination of the neurochemical and electrophysiological characteristics 
of Peganum harmala L. (Syrian rue), highlighting its potential as a versatile botanical option 
for managing Central Nervous System (CNS) disorders. A comprehensive literature review was 
performed utilizing databases such as PubMed, Scopus, and Web of Science until 2025. This 
search included preclinical studies, mechanistic investigations, and toxicological assessments 
concerning key alkaloids from P. harmala (harmine, harmaline, tetrahydroharmine, vasicine). 
Only studies published in English that reported pharmacological or electrophysiological findings 
were considered. The β-carboline alkaloids found in P. harmala function as reversible inhibitors 
of MAO-A, leading to increased levels of serotonin, dopamine, and norepinephrine. Harmine 
has been shown to enhance BDNF expression while also exhibiting antioxidant properties. On 
an electrophysiological level, harmaline modifies thalamocortical rhythms and EEG patterns, 
affecting cortical excitability. In animal models, it demonstrates anxiolytic, antidepressant, 
and neuroprotective effects; however, at high doses it can provoke proconvulsant activity 
and serotonergic toxicity. Its role in modulating stress through HPA axis downregulation and 
amygdala-hippocampal plasticity further emphasizes its significance in psychiatry. Conclusion: 
Peganum harmala presents a distinctive dual mechanism-both biochemical and bioelectrical-that 
positions it as a potential treatment for mood disorders, seizures, and stress-related conditions. 
However, successful clinical application will require standardized formulations along with 
studies focusing on dosage safety and controlled trials to confirm effectiveness while minimizing 
neurotoxicity.

Keywords:   Peganum harmala, β-carbolines, Harmine, MAO-A inhibition, BDNF, EEG, Cortical 
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INTRODUCTION

Neuropsychiatric and neurodegenerative disorders pose a 
significant and growing challenge to global health, leading 
to long-term disabilities, diminished quality of life, and 
rising healthcare costs. The Global Burden of Disease Study 
identifies major depressive disorder, anxiety disorders, and 
schizophrenia as primary contributors to years lived with 
disability on a worldwide scale.[1-3] Additionally, the prevalence 
of neurodegenerative conditions like Alzheimer’s and Parkinson’s 
diseases is rapidly increasing, driven by aging populations and the 

absence of effective curative treatments.[4,5] Despite progress in 
psychopharmacology and neurology, existing treatment options 
for neuropsychiatric disorders often fall short. Antidepressants 
and antipsychotic medications frequently exhibit delayed efficacy, 
limited effectiveness, resistance to treatment, and troublesome side 
effects such as metabolic syndrome, extrapyramidal symptoms, 
and sexual dysfunction[6-8] Moreover, many synthetic medications 
focus on individual neurotransmitter systems without addressing 
the intricate neural circuits and neurochemical interactions that 
characterize these conditions.[9]

These drawbacks have sparked an intensified search for alternative 
or supplementary therapies derived from natural products 
that offer multi-target effects with favorable safety profiles. 
Various plant-based compounds have demonstrated potential 
in influencing Central Nervous System (CNS) activity through 
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different mechanisms including monoamine oxidase inhibition, 
antioxidant properties, and modulation of neurotransmitter 
systems.[10-13] Notably, Peganum harmala L., commonly referred 
to as Syrian rue, has garnered attention for its high alkaloid 
content-particularly harmine and harmaline-which are known 
for their psychoactive and neuromodulatory characteristics.[14-17] 
The traditional use of Peganum harmala spans numerous cultures 
where it has been utilized for its calming properties in spiritual 
practices as well as in treating nervous system disorders.[7,10] 
Contemporary pharmacological research has validated its effects 
on serotonergic, dopaminergic, GABAergic, and glutamatergic 
pathways while also recognizing its function as a reversible 
inhibitor of Monoamine Oxidase A (MAO-A).[8,14,18,19] Recent 
studies have started investigating its bioelectrical impact on 
cortical excitability and seizure models; however, these areas 
remain insufficiently explored.[9,20] Given this distinctive 
profile that integrates neurochemical influence with potential 
electrophysiological modulation-Peganum harmala emerges 
as a promising subject for further investigation. This narrative 
review aims to thoroughly explore the neurobiological impacts of 
Peganum harmala with particular emphasis on its effects on neural 
hyperactivity, stress circuitry dynamics, and cortical excitability 
while highlighting existing gaps in electrophysiological and 
behavioral research evidence.

BOTANICAL AND ETHNOPHARMACOLOGICAL 
OVERVIEW OF PEGANUM HARMALA

Botanical Identity and Taxonomy

Peganum harmala L., commonly referred to as Syrian rue, is a 
perennial herbaceous species within the Nitrariaceae family, 
previously categorized under Zygophyllaceae.[21-23] This plant is 
distinguished by its slender, deeply lobed foliage, white blossoms, 
and seed pods rich in β-carboline alkaloids, especially harmine 
and harmaline.[24-26] It flourishes in arid to semi-arid environments 
and shows resilience in saline soils, making it common in both 
steppe and desert habitats.

Traditional Uses

Various traditional medicinal systems have employed P. harmala 
for its neuroactive, antispasmodic, and antimicrobial effects. It 
features prominently in Unani and Persian medicine for ailments 
such as hysteria, epilepsy, depression, and other disorders 
affecting the nervous system.[27,28] The seeds are frequently smoked 
or burned for their fragrance and purported calming properties; 
decoctions derived from the plant are used to address rheumatic 
conditions and gastrointestinal issues.[29,30] Additionally, folk 
medicine sometimes utilizes the plant as an emmenagogue or 
abortifacient;[31] however, these applications pose significant 
toxicological risks and are not advised in contemporary 
phytotherapy[32-34] Caution is warranted against overstating these 
traditional applications without pharmacological support since 

exaggerated folkloric claims-such as those involving protection 
against malevolent spirits-do not adhere to scientific criteria.[35,36]

Distribution and Cultural Relevance

In several traditional societies, particularly in parts of North 
Africa and the Middle East, Peganum harmala has been culturally 
used in rituals believed to offer protection from perceived harm, 
including what is referred to as the “evil eye.” These practices have 
been transmitted across generations and are widely regarded 
as part of regional heritage.[7-9,37] While belief in the l societies, 
particularly in parts of North Africa and the Middle East, 
Peganum harmala has been culturally used in rituals believed to 
offer protection from perceived harm, including ws, and focuses 
solely on the pharmacological and neurophysiological aspects of 
the plant.[11,15,20,38]

Standardization and Safety Concerns

Despite its extensive ethnopharmacological background, 
Peganum harmala raises notable safety issues. Its β-carboline 
alkaloids can function as reversible inhibitors of Monoamine 
Oxidase-A (MAO-A), leading to potential interactions with 
serotonergic drugs that could result in hypertensive crises or 
serotonin syndrome if not managed appropriately.[39-42] Moreover, 
at elevated doses, harmaline and harmine may produce neurotoxic 
side effects such as tremors, hallucinations, and seizures in 
experimental models.[32,43]

The standardization of P. harmala extracts is currently 
constrained due to variations in alkaloid levels across different 
geographic regions and plant parts.[15] Modern pharmacognosy 
underscores the necessity for precise dosing practices, stringent 
quality control measures, and public awareness regarding both its 
risks and therapeutic windows.[17,37]

PHYTOCHEMISTRY OF PEGANUM HARMALA

Peganum harmala L. is a prominent medicinal herb recognized 
for its abundant indole alkaloid content, especially β-carbolines. 
These compounds have been the subject of extensive research 
due to their neuroactive, antioxidant, and monoamine 
oxidase inhibitory effects, which render them of considerable 
pharmacological relevance.

Major Alkaloids

The seeds and roots of P. harmala are notably rich in β-carboline 
alkaloids, including:

	 •	 Harmine.

	 •	 Harmaline.

	 •	 Tetrahydroharmine.

	 •	 Harmalol.
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	 •	 Vasicine (a quinazoline alkaloid also present in 
Adhatoda vasica).

Harmine and harmaline are the primary alkaloids found in 
the seeds, often comprising more than 3% of their weight.[44-46] 
These substances serve as reversible inhibitors of Monoamine 
Oxidase A (MAO-A) and significantly influence serotonergic and 
dopaminergic neurotransmission.[47-49]

Structural Classes

The alkaloids derived from P. harmala can be categorized into 
two principal structural groups:

β-carbolines: This category consists of harmine, harmaline, 
harmalol, and tetrahydroharmine, all stemming from the 
tricyclic β-carboline framework. They are synthesized via the 
Pictet–Spengler condensation pathway using tryptophan as a 
precursor.[50-52]

Quinazoline alkaloids: This group includes vasicine and 
vasicinone, which differ structurally and pharmacologically 
from β-carbolines and are associated with bronchodilatory and 
uterotonic effects.[53,54]

Methods of Isolation and Characterization

The extraction of major alkaloids typically employs acid-base 
extraction followed by chromatographic methods such as 
Thin-Layer Chromatography (TLC), High-Performance Liquid 
Chromatography (HPLC), or Gas Chromatography-Mass 
Spectrometry (GC-MS).[55-59] Detection and quantification of 
these alkaloids usually involve techniques such as UV-visible 
spectrophotometry, NMR spectroscopy, and Electrospray 
Ionization Mass Spectrometry (ESI-MS).[60,61]

For instance, the purity and identity of harmine and harmaline 
extracted from seeds have been validated through a combination 
of column chromatography and ^1H-NMR spectroscopy.[62-64]

Concentration in Various Plant Parts

The distribution of alkaloids varies among different parts of the 
plant:

Seeds: The most concentrated source, with total alkaloid levels 
between 2-6% dry weight, primarily consisting of harmine and 
harmaline.[44,65,66]

Roots: Exhibit lower concentrations mainly comprising 
derivatives such as harmalol and harmaline.[8]

Stems and leaves: Contain minimal amounts that fluctuate 
significantly based on growth stage and environmental factors.[67]

Factors like geographic origin, soil conditions, and harvesting 
time also affect the concentration ratios of β-carbolines; 

hence standardization is essential for their pharmacological 
applications.[68] Table 1 presents an overview of the key alkaloids 
extracted from Peganum harmala, detailing their chemical 
classifications, neuropharmacological actions, and therapeutic 
benefits as supported by current preclinical research.

NEUROCHEMICAL MODULATION

The pharmacological effects of Peganum harmala are 
fundamentally linked to its ability to modulate central 
neurochemical pathways through various mechanisms. Its 
β-carboline alkaloids influence Monoamine Oxidase (MAO), 
monoaminergic neurotransmitters, and both GABAergic and 
glutamatergic systems, as well as neurotrophic and antioxidant 
signaling, which contribute to its potential in neuropsychiatric 
applications.

Monoamine Oxidase Inhibition

Harmine and harmaline, the predominant β-carbolines found 
in Peganum harmala, are effective reversible inhibitors of 
monoamine oxidase A (MAO-A).[8,59,65] This mitochondrial 
enzyme plays a crucial role in the oxidative deamination of 
serotonin (5-HT), Norepinephrine (NE), and Dopamine (DA)-
neurotransmitters essential for mood regulation.

By blocking MAO-A activity, these β-carbolines enhance the 
synaptic availability of these monoamines, paralleling the 
pharmacodynamics seen with contemporary antidepressants and 
anxiolytics.[69,70] Preclinical studies have confirmed that harmine 
exhibits antidepressant-like properties in models such as the 
forced swim test and tail suspension test, demonstrating efficacy 
comparable to that of conventional antidepressants.[71-73]

Furthermore, harmine has been observed to restore 
monoaminergic equilibrium in models of chronic stress, 
underscoring its significance for conditions related to depression, 
anxiety, and neurodegeneration associated with reduced 
monoamine levels.[49,74]

Modulation of Neurotransmitters

In addition to inhibiting MAO-A, the alkaloids from P. harmala 
appear to directly influence monoaminergic transmission. 
Research involving rodent models indicates that harmaline 
elevates serotonin and dopamine concentrations within the 
hippocampus and prefrontal cortex-regions crucial for emotional 
regulation and cognitive processes.[7,8]

Moreover, harmine enhances norepinephrine release in the locus 
coeruleus, further supporting its effects on arousal and depression 
alleviation.[10] These alterations in neurotransmitter levels depend 
on dosage and often coincide with behavioral modifications such 
as increased locomotor activity or reduced immobility in animal 
models indicative of mood disorders.[18,75-77]
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Interaction with GABA and NMDA Systems

Recent findings suggest that P. harmala also engages with 
GABAergic and glutamatergic pathways. Notably, harmaline 
boosts GABA transmission potentially by influencing GABA-A 
receptors; this contributes to its anticonvulsant and anxiolytic 
properties.[78]

Simultaneously, β-carbolines may inhibit NMDA receptors, thus 
mitigating glutamate-induced excitotoxicity-a critical factor 
involved in epilepsy as well as neurodegenerative diseases under 
chronic stress conditions.[79-81] This dual mechanism (enhanced 
GABA function plus NMDA inhibition) fosters a neuroprotective 
environment by curbing excitotoxic cascades while maintaining 
an inhibitory balance-helping explain the anti-seizure and 
anti-anxiety effects attributed to P. harmala extracts.[82-84]

Neurotrophic and Antioxidant Mechanisms

Harmine along with other related β-carbolines has shown an 
ability to upregulate Brain-Derived Neurotrophic Factor (BDNF), 
which is vital for synaptic plasticity, neuronal survival, and 
cognitive performance.[85] In experiments using mouse models, 
treatment with harmine significantly raised BDNF mRNA and 
protein levels within the hippocampus-effects similar to those 
observed with Selective Serotonin Reuptake Inhibitors (SSRIs).[71]

Additionally, P. harmala displays antioxidant characteristics by 
decreasing lipid peroxidation levels while increasing glutathione 
peroxidase activity and reducing Reactive Oxygen Species (ROS) 
in neurons subjected to oxidative stress.[9,15,86] Such actions may 
provide protective benefits against neurodegenerative disorders 
like Alzheimer's disease and Parkinson's disease where oxidative 
imbalance is a core pathological concern.[87,88]

BIOELECTRICAL MODULATION AND CORTICAL 
EXCITABILITY

Although the neurochemical effects of  Peganum harmala have 
been fairly well understood, its bioelectrical impacts-especially 
regarding cortical Excitability and Electroencephalographic 
(EEG) activity-have only recently come under investigation. 
These electrophysiological characteristics serve as an essential 
functional counterpart to its neuropharmacological properties and 
may elucidate its role in various neurological disorders, including 
epilepsy, Attention-Deficit/Hyperactivity Disorder (ADHD), 
and stress-related conditions. A visual depiction of the diverse 
neuropharmacological effects of Peganum harmala is shown in 
Figure 1, highlighting its influence on neurotransmission, cortical 
excitability, and potential therapeutic applications.

Effects on EEG Patterns

Multiple studies have indicated that harmaline, a primary 
β-carboline found in P. harmala, modifies EEG activity in animal 
models. Specifically, harmaline triggers rhythmic tremor-like 

discharges and enhances low-frequency power (theta and delta) 
within cortical areas.[44,89-92] Such oscillations are believed to 
signify improved synchronization among cortical neurons, a 
phenomenon frequently observed in hyperexcitable states like 
epilepsy and essential tremor.

Administering harmaline to rats resulted in bilateral spike-wave 
discharges, which align with increased cortical excitability and 
heightened seizure vulnerability[48] Importantly, these effects 
were dependent on dosage and were reversible, indicating that 
extracts from  P. harmala may present both proconvulsant and 
anticonvulsant properties based on context and dosage.

Experimental Models of Cortical Excitability

In rodent studies, harmaline has served as a tool for inducing 
tremors and seizure-like phenomena, making it valuable 
for examining neuroexcitation and oscillatory behavior.[89,93] 
Administering harmaline via intraperitoneal injection generates 
synchronous bursts within the inferior olive, thereby influencing 
the cerebello-thalamo-cortical circuits-essential pathways 
involved in generating tremors and regulating attention.[94]

Additionally, long-term EEG monitoring of mice treated with 
harmaline revealed sporadic paroxysmal discharges, reinforcing 
the idea that harmala alkaloids directly affect thalamocortical 
rhythms.[95] These experimental models hold significant 
translational promise for understanding conditions such as 
absence seizures and essential tremors.

Implications in Epilepsy, ADHD, and Stress

The influence on cortical excitability presents various potential 
clinical implications:

In the case of epilepsy-particularly generalized absence 
seizures-the capacity of harmaline to synchronize spike-wave 
activity could shed light on new mechanisms underlying seizure 
generation and modulation.[96]

For ADHD patients, changes in thalamocortical activity along 
with elevated theta power have been observed; this might 
theoretically be impacted by the EEG-modulating properties of P. 
harmala.[97,98]

In stress-related disorders characterized by irregular synchrony 
and heightened cortical responsiveness-often associated with 
imbalanced glutamate and GABA signaling-the oscillatory 
entrainment induced by harmala could stabilize these 
abnormalities while contributing to its noted anxiolytic effects.[7,77]

Role in Thalamo-Cortical Feedback Loops

A particularly fascinating aspect of harmaline’s mechanism is 
how it affects thalamo-cortical feedback loops. These circuits play 
a vital role in managing consciousness, sensory processing, motor 
coordination, and attentional focus. Harmaline has been shown 
to amplify rhythmic activity within these networks by enhancing 
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output from the inferior olive-which sends excitatory signals to 
both the thalamus and cortex through the cerebellum.[89,94,99]

This rhythmic synchronization is thought to reorganize 
oscillatory dynamics particularly within theta and alpha 
frequency bands critical for attentional gating as well as sensory 
integration.[100,101] Disruption of these loops has been linked to 
both neurodevelopmental disorders as well as neurodegenerative 
diseases-underscoring the therapeutic potential offered by 
targeted modulation strategies. Table 2 provides an overview 
of electrophysiological results concerning P. harmala alkaloids, 
emphasizing patterns of cortical excitability and their possible 
significance for neurological conditions.

MODULATION OF STRESS CIRCUITRY

Psychiatric disorders related to stress, such as depression, anxiety, 
and Post-Traumatic Stress Disorder (PTSD), are significantly 
linked to the dysregulation of the Hypothalamic-Pituitary-
Adrenal (HPA) axis along with its associated neural pathways. 
The bioactive substances found in Peganum harmala, especially 
β-carbolines like harmine and harmaline, have demonstrated 
beneficial effects in regulating neuroendocrine and behavioral 
responses to stress in preclinical studies.

Effects on the HPA Axis: CRH, ACTH, Cortisol

The HPA axis is activated by stress through the release 
of Corticotropin-Releasing Hormone (CRH) from the 
hypothalamus, followed by the secretion of Adrenocorticotropic 
Hormone (ACTH) from the pituitary gland and cortisol release 
from the adrenal cortex. Chronic activation of this system is 
associated with hippocampal damage as well as anxiety and 
mood disorders.[102,103]

Research indicates that harmine reduces corticosterone 
levels-analogous to cortisol in rodents-in models induced by 
stress, demonstrating a downregulatory effect on hyperactivity 
within the HPA axis.[104,105] This modulation may be attributed to 
the inhibition of MAO-A, which enhances serotonergic activity 
while suppressing CRH expression in the hypothalamus.[106,107]

Neural Substrates: Hippocampus, Amygdala, 
Prefrontal Cortex

Studies utilizing neuroimaging and histological techniques have 
pinpointed the hippocampus, amygdala, and Prefrontal Cortex 
(PFC) as critical areas impacted by chronic stress. These regions 
contain a high density of glucocorticoid receptors and are 
vulnerable to structural and functional damage when subjected 
to elevated cortisol levels.[69,108,109]

Preclinical research shows that administering harmine increases 
BDNF expression in both the hippocampus and PFC, thereby 

Figure 1:  Overview of the effects of Peganum harmala on neuropsychiatric disorders, emphasizing its alkaloid 
composition, modulation of neurotransmitter pathways, impact on cortical excitability, and possibilities for 

therapeutic application.



Pharmacognosy Reviews, Vol 19, Issue 38, Jul-Dec, 2025 263

Albukhari: Bioelectrical and Neurochemical Modulation by Peganum harmala

promoting neurogenesis and enhancing synaptic plasticity.[71,110,111] 
In addition to this, harmine seems to normalize neuronal 
excitability within the amygdala-a central hub for processing fear 
and anxiety-potentially through its effects on GABAergic and 
glutamatergic signaling pathways.[112,113]

Behavioral Evidence: Forced Swim, Tail Suspension, 
Open Field

Behavioral assessments conducted on rodents have yielded strong 
evidence supporting the stress-reducing effects of P. harmala 
alkaloids. In tests such as the Forced Swim Test (FST) and Tail 
Suspension Test (TST), harmine significantly lowered immobility 
time-a measure indicative of antidepressant efficacy.[7,38] These 
results were comparable to those achieved with standard 
Selective Serotonin Reuptake Inhibitors (SSRIs) and exhibited a 
dose-dependent relationship.

In Open Field Tests (OFT), harmine was observed to enhance 
exploratory behavior while increasing time spent in central 
areas-indicative of reduced anxiety-like behaviors without causing 
hyperactivity.[8,114] Importantly, these outcomes were diminished 
when serotonergic receptors were blocked, reinforcing the notion 
that serotonergic mechanisms mediate harmine's anxiolytic 
effects.[85,115]

Role in Stress-Induced Hyperactivity and 
Neuroplasticity

Chronic stress is known for disrupting hippocampal neurogenesis, 
impairing synaptic plasticity, and fostering neuronal 
hyperexcitability-all contributing factors for cognitive deficits 
and emotional disturbances.[49,69,116] Harmine appears capable 
of reversing these adverse effects by stimulating neurotrophic 
signaling pathways such as BDNF-TrkB while also activating 
anti-oxidative mechanisms.[111,117]

Furthermore, harmine influences electrophysiological responses 
during stress by diminishing cortical spike frequencies and 
stabilizing excitatory-inhibitory balance; this may elucidate its 
function in mitigating behavioral sensitization resulting from 
stressors.[46,118]

These findings indicate that P. harmala-with its β-carboline 
alkaloids-serves as a multi-faceted modulator for both endocrine 
systems and neuronal responses related to stress conditions. 
This suggests significant therapeutic promise for addressing 
depression, anxiety disorders, and PTSD.

TOXICOLOGICAL PROFILE

Although Peganum harmala exhibits promising pharmacological 
properties, it also presents significant toxicological concerns that 
require careful assessment to ascertain its therapeutic viability. 
The primary source of these risks is the high concentration of 
β-carboline alkaloids, which display dose-dependent effects 
that can range from neuroprotective to neurotoxic, and may 
negatively interact with drugs that impact the Central Nervous 
System (CNS).

Therapeutic Window and LDex

The therapeutic window for Peganum harmala is quite limited. 
In rodents, the estimated oral LD₅₀ values for harmaline and 
harmine fall between 30 and 50 mg/kg, varying based on 
the administration route and species involved.[32,39,119] When 
administered orally, extracts from P. harmala seeds demonstrate 
an LD₅₀ of roughly 2.8 g/kg in mice; however, this value decreases 
significantly with intraperitoneal administration, underscoring 
the significance of toxicity being route-dependent.[41,120]

At lower concentrations, β-carbolines function as reversible 
MAO-A inhibitors exhibiting neuroprotective qualities. 
Conversely, at elevated doses, these substances can penetrate 

Alkaloid Chemical Class Mechanism of Action Pharmacological Effect Reference Numbers
Harmine β-carboline Reversible inhibitor 

of MAO-A, stimulates 
BDNF, possesses 
antioxidant properties.

Antidepressant, anxiolytic, 
neuroprotective.

[8,49,71,85,88]

Harmaline β-carboline Modulates EEG activity, 
interacts with GABA/
NMDA receptors, exhibits 
proconvulsant effects 
depending on dosage.

Anticonvulsant at lower 
doses; tremor-inducing at 
higher doses.

[44,78,89]

Tetrahydroharmine β-carboline Enhances serotonergic 
transmission.

Mild neuromodulatory 
effects.

[52]

Vasicine Quinazoline Acts as a bronchodilator 
with sedative properties; 
structurally different from 
other alkaloids.

Provides non-neurological 
support and aids in 
bronchodilation.

[10,53,54]

Table 1:  Key Active Alkaloids in Peganum harmala and Their Neuropharmacological Effects.
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the blood-brain barrier and provoke CNS excitation along 
with symptoms such as tremors and seizure-like behavior in 
experimental models.[38,121]

Neurotoxicity vs. Neuroprotection

The contrasting effects of harmala alkaloids-being neurotoxic 
at elevated doses yet neuroprotective at lower levels-highlight 
the necessity for careful dosing and standardization practices. 
Research indicates that high concentrations of harmaline can lead 
to oxidative stress, mitochondrial dysfunction, and apoptosis in 
cortical neurons.[6]

In contrast, when administered at lower doses, both harmine 
and harmaline can enhance BDNF expression while decreasing 
lipid peroxidation and maintaining neuronal integrity, suggesting 
their potential as neuroprotective agents under regulated 
conditions.[85,88]

This duality underscores the critical importance of strict 
dosage management when utilizing these compounds in either 
experimental or clinical environments.

Adverse Effects at High Doses

Adverse reactions associated with high doses of P. harmala 
include:

	 •	 Tremors, ataxia, hyperreflexia, and seizures.

	 •	 Nausea, vomiting, bradycardia, and hypotension.

	 •	 Hallucinations, agitation, and delirium.

There have been cases of human intoxication linked to consuming 
large amounts of P. harmala seeds within traditional medicinal 
applications. Symptoms typically resemble those associated with 
serotonergic excesses indicating a toxicity profile similar to MAO 
inhibitors.[75,121]

One documented case reported status epilepticus and coma 
following ingestion of approximately 50 g of harmala seeds.[122] 
While these effects appear reversible with appropriate medical 
support, they underline the clinical risks involved with 
unsupervised consumption.

Interaction with CNS-Active Drugs

The β-carboline alkaloids found in P. harmala inhibit MAO-A 
activity responsible for metabolizing serotonin, norepinephrine, 
and dopamine. Co-administration alongside SSRIs or tricyclic 
antidepressants or serotonergic psychedelics may provoke 
serotonin syndrome-a serious condition characterized by 
hyperthermia along with agitation and neuromuscular 
disturbances.[123]

Furthermore, Peganum harmala may enhance the sedative effects 
of CNS depressants like benzodiazepines, opioids, and barbiturates 
through synergistic modulation of GABAergic pathways.[124] Such 
interactions necessitate heightened caution when combining P. 
harmala with prescribed psychotropic medications.

THERAPEUTIC POTENTIAL AND CLINICAL 
TRANSLATION

Peganum harmala exhibits a broad pharmacological profile, 
which includes monoamine oxidase inhibition, modulation 
of neurotransmitters, regulation of electrophysiological 
processes, antioxidant properties, and neurotrophic support. 
This multifaceted action renders it a promising candidate for 
addressing diverse neuropsychiatric and neurodegenerative 
disorders.

Possible Use in Depression, Epilepsy, PTSD, and 
Anxiety

A variety of preclinical studies indicate that P. harmala effectively 
diminishes depressive behaviors, alleviates anxiety symptoms, 
and reduces seizure occurrences. The primary alkaloid harmine 

Experimental 
Model

Compound Observed EEG Effects Brain Region 
Involved

Clinical Relevance Reference 
Numbers

Rats Harmaline Enhanced theta/delta 
power, spike-wave 
discharges.

Cortex, thalamus Absence epilepsy, 
essential tremor.

[44,89,90,92]

Mice Harmaline Paroxysmal discharges, 
rhythmic tremors.

Inferior olive, 
cortex

Seizure models, 
motor tremor.

[89, 94, 95]

Mice Harmine Decreased 
hyperexcitability under 
stress

Amygdala, 
hippocampus

Anxiolytic effect, 
neuroplasticity.

[49, 71]

Cats Harmaline Synchronized 
oscillations in 
mesencephalic circuits.

Brainstem, cortex Experimental EEG 
mapping.

[92]

Table 2:  Bioelectrical Effects of Peganum harmala on Cortical Activity and EEG Patterns.
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has demonstrated antidepressant effects that are comparable to 
those of fluoxetine and imipramine in animal studies.[6,7] The 
underlying mechanisms involve enhanced serotonin availability, 
increased BDNF levels, and modulation of the HPA axis.[121,125]

In epilepsy models, harmaline displays both proconvulsant and 
anticonvulsant properties based on dosage and experimental 
context, underscoring its intricate interactions with GABAergic 
and glutamatergic systems.[126] Additionally, harmine has 
exhibited anxiolytic effects through serotonergic and GABAergic 
pathways, positioning it as a potential candidate for treating 
PTSD and stress-related conditions.[69]

Its effect on cortical excitability alongside thalamocortical 
oscillations further suggests its applicability in managing 
attention-deficit disorders and essential tremor.[127]

Current Limitations in Translating to Human Use
Despite encouraging results from preclinical investigations, 
several challenges hinder the clinical application of P. 
harmala-based treatments:

Concerns regarding toxicity arise primarily due to its narrow 
therapeutic window coupled with MAO-A inhibition-related 
interactions that present significant safety issues.[9,128]

The absence of standardized extract formulations along with 
variability in β-carboline concentrations across different regional 
strains hampers reproducibility efforts.[129]

Currently lacking are large-scale clinical trials that assess the 
safety or efficacy of P. harmala for depression, epilepsy, or anxiety 
disorders in humans.[36,38]

Moreover, regulatory obstacles surrounding psychoactive 
substances have historically dampened interest in botanicals rich 
in β-carbolines.[29] Although the pharmacological mechanisms 
of Peganum harmala have been progressively elucidated, its 
application in clinical settings has yet to expand significantly. In 
addition to understanding individual mechanisms, it is essential 
to identify the broader challenges that account for the slow 
uptake in clinical practice, despite its promising potential. These 
challenges encompass regulatory issues, toxicological concerns, 
biochemical factors, and methodological hurdles that need to 
be tackled within a cohesive translational approach. For a visual 
summary of these limitations, see Figure 2.

This illustration highlights four primary obstacles: (1) the 
potential for serotonergic toxicity and hypertensive crises 
linked to MAO-A inhibition; (2) neurotoxicity that escalates 
with dosage, especially at elevated levels; (3) inconsistencies in 
β-carboline alkaloid concentrations among different parts of the 

Figure 2:  Barriers to the clinical use of Peganum harmala.
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plant and from various geographical origins; and (4) the absence 
of standardized extracts coupled with limited electrophysiological 
studies. Together, these issues hinder its progression towards 
becoming a safe and regulated therapeutic option targeting the 
central nervous system.

Potential for Drug Formulation or Standardized 
Extracts

To address these challenges effectively

Standardized extracts with clearly defined concentrations of 
harmine and harmaline should be developed.

There is a need to investigate low-dose formulations or 
semi-synthetic derivatives that possess improved safety profiles.

Designing slow-release or targeted delivery mechanisms could 
help mitigate CNS-related toxicity risks.

Initial research is underway examining encapsulation techniques 
and nanoparticle-based delivery systems for P. harmala alkaloids 
to improve bioavailability while minimizing peak plasma 
toxicity.[130]

This development may pave the way for creating β-carboline-
based pharmaceuticals inspired by P. harmala.

Interdisciplinary Implications: Phytochemistry, 
Psychiatry, Electrophysiology  

Research on Peganum harmala encompasses multiple 
disciplines

Phytochemistry provides valuable insights into optimizing 
methods for extracting alkaloids as well as their purification and 
structural modification.[131]

Psychiatry paired with behavioral neuroscience establishes a 
clinical framework to evaluate its anxiolytic and antidepressant 
potential.[132]

Electrophysiology contributes to understanding its influence 
on brain oscillations as well as cortical excitability and seizure 
thresholds.[133]

An interdisciplinary approach integrating these fields may unlock 
the therapeutic potential of Peganum harmala while facilitating 
its integration into evidence-based neuropharmacology practices. 
offers a detailed summary of neuropsychiatric and neurological 
conditions that may benefit from the therapeutic use of Peganum 
harmala. This classification is grounded in mechanistic reasoning 
obtained from preclinical studies and electrophysiological 
findings.

RESEARCH GAPS AND FUTURE DIRECTIONS

While there is an expanding collection of preclinical data 
underscoring the neuropharmacological capabilities of Peganum 
harmala, significant research deficiencies persist that need to be 
addressed for its safe and effective application in clinical settings.

Need for in vivo Synergy Studies with CNS Drugs

So far, most pharmacological studies on  P. harmala have 
concentrated on its individual effects. However, due to its MAO-A 
inhibitory properties and influence on various neurotransmitter 
systems, it is essential to investigate its synergistic or antagonistic 
interactions with well-established CNS medications, including:

	 •	 Selective Serotonin Reuptake Inhibitors (SSRIs).

	 •	 Anticonvulsants (e.g., valproate, carbamazepine).

	 •	 Atypical antipsychotics.

Such investigations would clarify additive effects, potential 
toxicity concerns, and drug interaction profiles, particularly 
in relation to serotonin syndrome, seizure thresholds, and 
dopaminergic modulation.[134]

Absence of Clinical Trials

Although animal models have shown antidepressant, anxiolytic, 
anticonvulsant, and neuroprotective effects of P. harmala, there 
is currently a total lack of rigorously designed clinical trials 
assessing its efficacy in humans.[135] This limitation significantly 
hinders its translational relevance.

Future research should focus on:

	 •	 Phase I safety trials utilizing standardized low-dose 
extracts.

	 •	 Controlled human studies addressing mild-to-
moderate depression, generalized anxiety disorder, or 
treatment-resistant epilepsy.

	 •	 Comparative studies evaluating efficacy against standard 
pharmaceuticals.

These initiatives would not only substantiate therapeutic claims 
but also help determine appropriate dosing guidelines and safety 
profiles.[36]

Need for Bioelectrical Measurement Studies (EEG, 
MEA)

Much of the current literature concerning the bioelectrical effects 
of  P. harmala relies on basic EEG measurements or behavioral 
outcomes. There is a pressing need for more sophisticated 
electrophysiological studies such as:
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	 •	 High-resolution Electroencephalography (EEG) to map 
cortical oscillatory changes across different frequency 
bands.

	 •	 Multielectrode Array (MEA) systems for real-time 
analysis of neuronal network activity.

	 •	 Optogenetics or calcium imaging techniques to visualize 
circuit-level dynamics.

These methodologies would enhance understanding of how  P. 
harmala affects thalamocortical loops, spike synchrony, and 
plasticity-particularly relevant for conditions characterized by 
network hyperexcitability.[136]

Suggestions for Targeted CNS Disorders

Considering its pharmacological properties and bioelectrical 
profile,  Peganum harmala could be strategically explored in 
relation to:

	 •	 Schizophrenia: due to its dopaminergic, glutamatergic, 
and neurotrophic actions.[10]

	 •	 Epilepsy: because of its dual influence on GABAergic 
and excitatory pathways.[137]

	 •	 Obsessive-Compulsive Disorder (OCD) and PTSD: 
through mechanisms related to serotonergic activity 
and neuroplasticity enhancement.[138]

	 •	 Parkinson's disease: potentially owing to MAO-B 
inhibition and antioxidant protection.[15]

These applications necessitate well-designed disease-specific 
models along with dose-finding studies and longitudinal outcome 
assessments to thoroughly evaluate benefit-risk ratios.

CONCLUSION

Peganum harmala presents itself as a phytotherapeutic compound 
with noteworthy neuropharmacological and electrophysiological 
characteristics that engage various mechanistic pathways 
associated with Central Nervous System (CNS) disorders. Its 
β-carboline alkaloids, particularly harmine and harmaline, 
exhibit reversible inhibition of Monoamine Oxidase-A (MAO-A), 
promote Brain-Derived Neurotrophic Factor (BDNF) signaling, 
modulate both GABAergic and glutamatergic systems, and 
reduce oxidative stress. These effects contribute to the observed 
neuroprotective, antidepressant, anxiolytic, and anticonvulsant 
properties in preclinical studies.

Simultaneously, bioelectrical research indicates that harmala 
can influence cortical excitability, synchronize thalamocortical 
oscillations, and modify EEG patterns. This suggests it operates 
through a combined neurochemical and electrophysiological 
mechanism. Such attributes set P. harmala apart from traditional 

mono-target therapies and highlight its potential as a candidate 
for holistic neuropsychiatric treatment.

Despite its promise, progress in clinical application is hindered 
by significant issues: a limited therapeutic index, dose-related 
neurotoxicity, inconsistent alkaloid concentrations among plant 
sources, and an absence of human clinical trials. Addressing these 
obstacles requires comprehensive toxicological assessments, the 
creation of standardized bioavailable formulations, and phased 
clinical validation to evaluate safety, efficacy, and possible drug 
interactions.

In conclusion, while Peganum harmala holds considerable 
pharmacological potential, its practical clinical application is 
dependent on a thorough and collaborative research approach. 
Integrating its ethnopharmacological heritage with contemporary 
neuroscientific study may pave the way for innovative therapeutic 
options for CNS disorders related to stress, mood regulation, and 
excitability.
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ACTH: Adrenocorticotropic Hormone; ADHD: 
Attention-Deficit/Hyperactivity Disorder; BDNF: Brain-Derived 
Neurotrophic Factor; CNS: Central Nervous System; CRH: 
Corticotropin-Releasing Hormone; DA: Dopamine; EEG: 
Electroencephalography; FST: Forced Swim Test; GABA: 
Gamma-Aminobutyric Acid; HPA: Hypothalamic–Pituitary–
Adrenal (Axis); LD₅₀: Median Lethal Dose; MAO-A: Monoamine 
Oxidase A; MEA: Multielectrode Array; NE: Norepinephrine; 
NMDA: N-Methyl-D-Aspartate; OCD: Obsessive–Compulsive 
Disorder; PFC: Prefrontal Cortex; PTSD: Post-Traumatic 
Stress Disorder; ROS: Reactive Oxygen Species; SSRI: Selective 
Serotonin Reuptake Inhibitor; TST: Tail Suspension Test.
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