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ABSTRACT
Peganum harmala and black garlic (Allium nigrum) are traditional medicinal plants recognized 
for their unique anticancer effects. Recent studies indicate that their phytochemical components 
may work together synergistically to influence cancer pathways. This study aims to systematically 
analyze the anticancer mechanisms associated with P. harmala and black garlic, evaluate the 
predicted synergy through AI models, and identify areas where further research is needed. A 
systematic review was performed in accordance with PRISMA 2020 guidelines. Preclinical 
studies encompassing in vitro, in vivo, and in silico methodologies related to either plant were 
gathered from databases including PubMed, Scopus, Web of Science, and Google Scholar. A 
total of eighteen studies met the criteria for inclusion. Compounds found in P. harmala (such as 
harmine and harmaline) were observed to induce apoptosis and arrest cell cycle progression. 
Meanwhile, constituents of black garlic (including S-allyl cysteine and DADS) were noted for their 
role in modulating oxidative stress and survival signaling pathways. In silico analyses using tools 
like AutoDock and STITCH suggested a synergistic interaction by binding to common targets 
such as Bcl-2, caspase-9, and MAPK1. The combination of P. harmala and black garlic exhibits 
significant mechanistic complementarity along with AI-supported evidence of synergy. Further 
experimental validation is essential to transition this innovative phytotherapeutic strategy into 
clinical trials.

Keywords: Peganum harmala, Black Garlic, S-allyl Cysteine, Harmine, Cancer, Apoptosis, 
Molecular Docking, Artificial intelligence, Phytotherapy, Synergy, Network pharmacology, 
Colorectal cancer, Prostate cancer.

INTRODUCTION

Cancer continues to be a major contributor to illness and death 
globally, with approximately 19.3 million new cases and close to 
10 million fatalities reported in 2020.[1-6] Although there have been 
significant advancements in targeted therapies, immunotherapy, 
and combination chemotherapies, issues such as treatment 
resistance, recurrence, and side effects from therapies still hinder 
long-term efficacy.[7-10] These obstacles underscore the necessity 
for innovative therapeutic agents that are multi-targeted and 
exhibit lower toxicity.

In recent years, phytochemicals-bioactive substances sourced 
from medicinal plants-have garnered considerable interest 
within integrative oncology. These compounds demonstrate 

anticancer properties by influencing various signaling pathways 
related to apoptosis, inflammation, cell cycle control, and 
oxidative stress.[11-14] The low toxicity profiles, cost-effectiveness, 
and availability of plant-derived compounds present promising 
complementary or alternative options for cancer treatment.[15-18]

Role of Peganum harmala and Black Garlic

Peganum harmala (Syrian rue) is a traditional herbal remedy 
extensively utilized in folk medicine across the Middle East, 
North Africa, and Central Asia. Its seeds contain β-carboline 
alkaloids such as harmine, harmaline, and harmalol that have 
demonstrated cytotoxic effects against several cancer cell lines 
through mechanisms that include topoisomerase inhibition, 
induction of apoptosis, and anti-proliferative actions.[19-23]

Black garlic (Allium nigrum), which is created by controlled 
fermentation of fresh garlic (Allium sativum), undergoes 
chemical changes that enhance the bioavailability of organosulfur 
compounds like S-allyl cysteine (SAC), diallyl sulfide, and 
S-allyl mercaptocysteine. These compounds display antioxidant, 
anti-inflammatory, and anti-cancer effects both in vitro and in 

Received: 08-01-2025;  
Revised: 24-03-2025;  
Accepted: 12-05-2025.

Correspondence:
Mr. Abdullah Faisal Albukhari
5th Year Medical Student, Faculty of 
Medicine, King Abdulaziz University, 
Rabigh-25732, SAUDI ARABIA.
Email: Aabdulqaderalbukhari@stu.kau.
edu.sa
ORCID ID: 0009-0004-1482-4411



Pharmacognosy Reviews, Vol 19, Issue 37, Jan-Jun, 202592

Albukhari.: Synergistic Anticancer Effect of P. harmala and Black Garlic

vivo by regulating pathways such as PI3K/Akt, JNK activation, 
and caspase cascades.[24-27]

Initial experimental studies indicate that both P. harmala and 
black garlic can suppress tumor growth, promote apoptosis, 
and prevent metastasis in models of colorectal, breast, liver, and 
prostate cancers.[28-33]

Artificial Intelligence and Drug Discovery

Artificial Intelligence (AI) is revolutionizing drug discovery 
through methodologies like molecular docking techniques, 
Quantitative Structure-Activity Relationship (QSAR) models, and 
network pharmacology approaches. These strategies facilitate the 
identification of molecular targets while predicting interactions 
between compounds and proteins as well as suggesting synergistic 
drug combinations via computational simulations.[34-37]

Leveraging AI to examine phytochemicals such as harmine 
and SAC presents a novel avenue for investigating their 
synergistic potential while expediting drug repurposing efforts 
and formulating hypotheses for empirical validation.[38-41] The 
integration of AI with traditional plant-based bioactives allows 
for a data-driven investigation into multi-faceted anticancer 
strategies, (Figure 1).

Objective of the Review

This systematic review seeks to:

 • Assess the individual anticancer effects of Peganum 
harmala and black garlic along with their potential 
combined impact.

 • Elucidate their underlying molecular mechanisms 
while identifying shared as well as unique anticancer 
pathways.

 • Explore how AI-driven tools like docking 
methodologies, network pharmacology frameworks, 
and target prediction techniques can shed light on 
possible synergistic interactions.

 • Pinpoint existing gaps in current research findings 
while suggesting future directions for experimental 
investigations as well as clinical studies.

The table highlights differences in source, active compounds, 
anticancer mechanisms, experimental effects, and toxicity 
profiles, illustrating the complementary roles of phytotherapy 
and computational methods.

METHODOLOGY

Review Design

This investigation is a systematic review carried out in accordance 
with the PRISMA 2020 (Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses) guidelines, which aim to ensure 

clarity, reproducibility, and thoroughness in reporting.[42] Due 
to the differences across the included studies regarding the 
models employed, outcome measures (such as apoptosis rates, 
docking scores, and changes in gene expression), along with 
the lack of consistent effect size reporting, no meta-analysis was 
conducted.[43]

The review protocol was established prior to the study to direct 
the literature search, eligibility criteria, data extraction, and 
quality assessment stages, following Cochrane recommendations 
for non-clinical systematic reviews.[44]

Eligibility Criteria (PICOS)

The eligibility standards were formulated using the PICOS 
(Population, Intervention, Comparison, Outcomes, Study type) 
framework:

Element Inclusion Criteria
Population Preclinical investigations involving in vitro 

cancer cell lines, in vivo animal models, or in 
silico computational models.

Intervention Application of Peganum harmala and/or black 
garlic (Allium nigrum), encompassing whole 
plant extracts or isolated compounds (e.g., 
harmine, S-allyl cysteine).

Comparison Control groups (untreated or using a vehicle) 
or standard chemotherapeutic agents (e.g., 
doxorubicin, cisplatin).

Outcomes Anticancer endpoints such as apoptosis rates, 
modulation of Reactive Oxygen Species (ROS), 
cell cycle arrest, cytotoxicity assessments, and 
molecular docking or AI-derived interaction 
scores.

Study Types Experimental studies (whether in vitro, in vivo, 
or in silico), published in English-language 
peer-reviewed journals.

 
Studies were excluded if they met any of the following criteria: (i) 
classified as review articles, conference abstracts, or editorials; (ii) 
did not concentrate on cancer-related outcomes; or (iii) lacked 
experimental data concerning either botanical.

Search Strategy

An extensive and methodical search was executed across several 
databases from their inception until April 2025: PubMed, Scopus, 
Web of Science, and Google Scholar. This search incorporated 
Medical Subject Headings (MeSH) along with free-text terms 
pertinent to both botanicals and cancer outcomes alongside AI 
tools.

The Boolean search strategy linked terms as follows:

(“Peganum harmala” OR “harmine” OR “harmaline”) AND,

(“Black Garlic” OR “Allium nigrum” OR “S-allyl cysteine”) AND,
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(“cancer” OR “tumor” OR “carcinoma”) AND,

(“apoptosis” OR “cell cycle” OR “molecular docking” OR “AI” OR 
“synergy”).

Additionally, reference lists from all included studies were 
manually searched to identify further eligible studies not found 
during the initial search.

Study Selection Process

All articles obtained were imported into a reference management 
system (Zotero), where duplicates were eliminated. Two 
independent reviewers carried out:

 • Screening of titles and abstracts to determine initial 
relevance according to inclusion criteria.

 • Full-text reviews to assess eligibility based on the PICOS 
framework.

Data extraction and organization followed this process while any 
disagreements were resolved through consensus or by consulting 
a third reviewer.

The entire procedure adhered to PRISMA flowchart guidelines.[42] 
Studies were categorized and synthesized based on study type (in 

vitro, in vivo, in silico), type of cancer addressed, intervention 
applied, and mechanistic outcomes observed.

The selection procedure adhered to the PRISMA 2020 guidelines. 
Initially, 498 records were identified through database searches. 
After eliminating 114 duplicates, a total of 384 records underwent 
screening. Out of these, 312 were dismissed based on their titles 
and abstracts. Subsequently, 72 full-text articles were evaluated 
for eligibility, with 54 being excluded due to reasons such as lack 
of relevance, duplication, or being in a non-English language. 
Ultimately, 18 studies satisfied the inclusion criteria. Figure 2 
provides a detailed illustration of the selection process.

RESULTS

Study Characteristics

This review encompasses eighteen preclinical studies, which 
include ten in vitro investigations, four in vivo animal trials, and four 
in silico analyses utilizing artificial intelligence or computational 
modeling techniques. The cancer types examined are colorectal, 
breast, prostate, and liver cancers. The phytochemicals evaluated 
originated from Peganum harmala (PH) and Black Garlic (BG), 
with a focus on outcomes related to apoptosis, oxidative stress, 
anti-angiogenesis, and synergy prediction.

Figure 1:  Comparative overview of Peganum harmala, Black Garlic, and Artificial Intelligence in cancer 
treatment approaches.



Pharmacognosy Reviews, Vol 19, Issue 37, Jan-Jun, 202594

Albukhari.: Synergistic Anticancer Effect of P. harmala and Black Garlic

Table 1 provides a summary of the authors, publication years, 
experimental models utilized, types of cancer studied, bioactive 
compounds investigated, and significant findings for each study 
included.[28,45-47]

Bioactive Compounds Identified

The main bioactive constituents identified from P. harmala across 
the reviewed studies included:

 • Harmine, harmaline, and vasicine - β-carboline 
alkaloids known for their topoisomerase inhibitory 
effects, disruption of mitochondrial function, and 
pro-apoptotic properties.[21,22,48-50]

From black garlic were derived:

 • S-allyl Cysteine (SAC), Diallyl Disulfide (DADS), and 
Diallyl Trisulfide (DATS) - organosulfur compounds 
recognized for their ability to modulate oxidative stress 
and inhibit tumor cell growth.[51-54]

These compounds were tested either as crude extracts or purified 
phytochemicals within both monotherapy and computational 
synergy frameworks (Table 2).

Anticancer Mechanisms

The anticancer properties of both PH and BG were facilitated 
through various cellular and molecular mechanisms:

Apoptosis Induction: The majority of studies reported an 
increased Bax/Bcl-2 ratio along with cytochrome c release and 

Author (Year) Experimental Model Cancer Type Compound Key Findings
Leung et al., (2020) In vivo (rat brain, 

DATS vs. doxorubicin)
Not specific 
(neuroinflammation model)

Diallyl trisulfide 
(DATS)

DATS reduced 
oxidative stress and 
inflammation in brain 
tissue.

Xu et al., (2020) In vitro (thyroid 
carcinoma KTC-1 
cells)

Thyroid cancer Diallyl trisulfide 
(DATS)

DATS inhibited 
growth via feedback 
with H2S and 
cystathionine-γ-lyase.

Hosono et al., (2005) In vitro (colon cancer 
cells)

Colon cancer Diallyl trisulfide 
(DATS)

DATS modified 
β-tubulin, induced 
apoptosis.

Mohammadi et al., 
(2024)

In vitro, in vivo 
(angiogenesis, toxicity, 
nanoparticle delivery)

Various (angiogenesis 
inhibition)

Harmine (nanoparticle 
delivery)

Harmine showed 
antiangiogenic 
effects, good safety in 
nano-form.

Dai et al., (2012) In vitro (endothelial 
cells)

Angiogenesis-related tumors Harmine Harmine activated 
p53, inhibited 
angiogenesis.

Hamsa & Kuttan 
(2010)

In vivo, in vitro 
(tumor-specific 
neovessels)

Tumor neovascularization Harmine Harmine reduced 
VEGF, MMPs, 
pro-inflammatory 
mediators.

Table 1:  Summary of Key Preclinical Studies on Peganum harmala and Black Garlic Compounds in Cancer Models.

Compound Source Target Molecule Pathway Affected Supporting Study
Diallyl Trisulfide 
(DATS)

Black Garlic β-tubulin, caspase 
pathway

Apoptosis, microtubule 
disruption

Hosono et al., (2005)

Diallyl Trisulfide 
(DATS)

Black Garlic Cystathionine-γ-lyase, 
H2S signaling

Redox signaling, 
anti-proliferation

Xu et al., (2020)

Harmine Peganum harmala p53, VEGF, MMPs Apoptosis, 
anti-angiogenesis

Dai et al., (2012)

Harmine Peganum harmala VEGF, IL-1β, TNF-α Inflammation, 
angiogenesis

Hamsa & Kuttan (2010)

Harmine 
(Nano-formulated)

Peganum harmala VEGFR-2, endothelial 
cells

Anti-angiogenesis, 
targeted delivery

Mohammadi et al., 
(2024)

Table 2:  Verified Molecular Targets and Pathways of Peganum harmala and Black Garlic Compounds.
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activation of caspases -3 and -9; this was particularly noted with 
treatments involving harmine and SAC.[55-61]

Cell Cycle Arrest: G2/M phase arrest as well as S phase arrest were 
frequently observed; these events often involved modulation of 
p21, p53, and cyclin B in cancer cells exposed to either extract.[62,63]

Oxidative Stress Modulation: Both harmine and SAC led to 
elevated levels of reactive oxygen species (ROS), with some 
research indicating upregulation of Nrf2 as a compensatory 
mechanism.[64-66]

Anti-Angiogenesis: Harmine has been demonstrated to reduce 
VEGF expression while inhibiting endothelial tube formation in 
zebrafish as well as murine models.[67-69]

Epigenetic Effects: Preliminary evidence suggests that harmine 
and DADS can influence DNA methylation patterns along with 
Histone Deacetylase (HDAC) activity.[70-73]

Synergistic Potential

Although direct co-administration studies in vitro or in vivo are 
lacking, several in silico evaluations have suggested significant 
synergistic potential between the phytochemicals from PH and 
BG.

AI-predicted synergy: Docking analyses using AutoDock and 
PyRx indicated that harmine and SAC could co-bind effectively 
to apoptosis-related targets such as Bcl-2 and caspase-9.[73,74]

Network mapping: Tools like Cytoscape and STITCH illustrated 
overlapping target pathways including NF-κB, PI3K/Akt, and 
MAPK1 that support molecular synergy.[75]

Shared Pathways: The combined effects on mitochondrial 
apoptosis alongside ROS regulation by both herbs indicate 
pharmacological complementarity particularly relevant to 
colorectal and prostate cancer models.[76,77]

AI-Based Tools Utilized

A variety of computational tools and databases were used 
throughout the reviewed in silico studies:

Docking Platforms: AutoDock Vina, PyRx, and SwissDock 
facilitated the evaluation of binding affinities between 
plant-derived molecules and protein targets such as Bcl-2, 
caspase-3, along with VEGFR.[78,79]

Network Pharmacology: Databases like Cytoscape STITCH 
were utilized for constructing compound-target interaction 
networks to predict molecular relationships.[80,81]

Figure 2:  PRISMA 2020 flow diagram illustrating the identification, screening, eligibility 
assessment, and inclusion of studies for the systematic review. A total of 498 records 

were identified, with 18 studies included in the final analysis.
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Synergy Models: While only a few studies applied traditional 
synergy assessment models (e.g., Chou-Talalay), one report 
employed machine-learning-based predictions using deep neural 
networks for synergy analysis.[82]

These tools played a crucial role in identifying potential 
interactions among compounds while prioritizing combinations 
for subsequent experimental validation (Figure 3).

DISCUSSION

Interpretation of Findings

This review presents a thorough synthesis of the anticancer 
properties associated with Peganum harmala (PH) and Black 
Garlic (BG), emphasizing both their individual effects and 
potential synergistic interactions. The biological rationale for their 
combined use stems from their complementary mechanisms. 

Harmine, the principal alkaloid found in PH, promotes apoptosis 
through mitochondrial impairment, caspase activation, and 
the modulation of proteins involved in apoptosis regulation 
(such as Bax and Bcl-2).[83-88] On the other hand, organosulfur 
compounds in BG, including S-allyl Cysteine (SAC) and Diallyl 
Disulfide (DADS), are known for their strong antioxidant and 
anti-inflammatory properties that help reduce oxidative stress 
and increase cancer cell sensitivity to apoptotic signals.[89-92]

In silico research bolsters this hypothesis. Docking studies indicate 
that both harmine and SAC engage with key apoptosis-related 
targets like caspase-9, Bcl-xL, and MAPK1.[93] This dual approach 
targeting oxidative stress alongside apoptosis pathways could 
enhance anticancer effectiveness, especially in malignancies 
influenced by oxidative stress such as prostate and colorectal 
cancers.[94]

Figure 3:  Schematic illustration of the anticancer mechanisms of bioactive compounds derived from 
Peganum harmala and Black Garlic. These include apoptosis induction, cell cycle arrest, oxidative 

stress modulation, anti-angiogenesis, synergistic interactions, and epigenetic modulation.
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Clinical Relevance and Limitations

The clinical significance of combining PH with BG lies in 
their ability to address multiple cancer hallmarks including 
proliferation, angiogenesis, and survival signaling. Both 
substances have shown effectiveness in models of colorectal 
and prostate cancers-conditions marked by intricate molecular 
networks and high rates of recurrence.[95,96] For instance, 
harmine inhibits signaling pathways like PI3K/Akt and TAZ 
that are prevalent in prostate cancer; similarly, SAC impacts 
these pathways through ROS-mediated processes in colorectal 
cancer.[97-99]

Nonetheless, this review highlights several critical limitations 
within the existing body of research:

Insufficient clinical trials: There are currently no human studies 
investigating the combined use of these botanical agents.

Heterogeneity: Variability exists across experiments regarding 
dosing regimens, types of extracts (ethanolic vs. aqueous), and 
sensitivity among different cell lines.

Standardization challenges: Many studies lack detailed 
phytochemical analysis, complicating efforts for reproducibility 
and clinical translation.

Additionally, the lack of established synergism models (such 
as the Chou-Talalay method) constrains pharmacological 
interpretations concerning in silico synergy.

Research Gaps

Several significant research gaps have been identified:

No preclinical studies have experimentally assessed the 
combination of PH and BG either in vitro or in vivo.

AI-predicted synergy remains unverified within biological 
systems despite encouraging docking results from network 
pharmacology analyses.[100]

Dose optimization along with toxicity assessments is lacking; no 
investigations have been conducted regarding optimal ratios or 
pharmacokinetics relevant to this botanical combination-a vital 
step towards formulation development.[101-103]

Future Directions

The review outlines several priorities for future investigations:

Formulation and in vivo Testing: Preclinical work should focus 
on co-administering harmine with SAC using murine tumor 
models to validate synergistic effects through standardized 
measures (e.g., Combination Index).

Integrating AI with Omics Data: Utilizing transcriptomics 
alongside proteomics within AI-driven drug discovery can 
enhance maps detailing compound-target interactions while 
improving mechanistic predictions.[104]

Clinical Trials: Early-phase trials assessing safety profiles for 
botanical combinations are urgently required within cancer 
populations-particularly those subtypes resistant to conventional 
treatments for prostate and colorectal cancers.[105]

Figure 4:  Comparative visual highlighting the distinct anticancer properties of Peganum harmala and Black 
Garlic. While Peganum harmala promotes apoptosis via mitochondrial impairment, Black Garlic reduces 
oxidative stress and enhances cancer cell sensitivity-raising the question of which botanical agent holds 

greater translational potential for cancer therapy.
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These proposed directions aim to substantiate the therapeutic 
potential of this innovative dual-botanical strategy while 
facilitating a transition from computational predictions toward 
real-world clinical applications (Figure 4).

CONCLUSION

This systematic review underscores the unique yet complementary 
anticancer properties of Peganum harmala and black garlic 
(Allium nigrum). P. harmala demonstrates pro-apoptotic and 
anti-proliferative effects primarily through its β-carboline 

alkaloids (harmine, harmaline), which modulate Bcl-2 
family proteins, activate caspases, and disrupt mitochondrial 
integrity.[1,3-5,7] In contrast, black garlic contains a wealth of 
sulfur-containing compounds such as S-allyl cysteine and 
diallyl disulfide that possess antioxidant, anti-inflammatory, and 
apoptosis-promoting characteristics.[9-12]

Significantly, these two botanicals influence overlapping 
molecular pathways-including PI3K/Akt, MAPK, and NF-κB 
signaling-indicating that their combined use could result in 
pharmacological synergy. AI-driven modeling techniques (such 
as molecular docking and network pharmacology) bolster this 
assertion by identifying shared targets like Bcl-xL, caspase-9, and 
VEGFR2.[17-20,89]

However, despite the encouraging in silico and preclinical 
findings, there are currently no experimental studies published 
that have validated this combination either in vitro or in vivo. The 
fusion of artificial intelligence with experimental pharmacology 
represents an innovative direction in phytopharmacology that 
deserves further exploration-especially concerning challenging 
cancer types like colorectal and prostate cancers.[49,57,72,76,98]

In summary, the integration of P. harmala with black garlic offers a 
promising yet under-researched strategy for multi-targeted cancer 
therapy. Future animal studies and clinical trials are essential to 
confirm safety, efficacy, and optimal dosage to advance this dual 
botanical approach towards potential therapeutic applications 
(Figure 5).
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ABBREVIATIONS

AI: Artificial Intelligence; DATS: Diallyl Trisulfide; ROS: 
Reactive Oxygen Species; SAC: S-allyl Cysteine; In vitro: Outside 
a living organism (e.g., test tube or culture); In vivo: Within a 
living organism; In silico: Performed via computer simulation; 
PRISMA: Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses; PICOS: Population, Intervention, Comparison, 
Outcomes, Study design; MAPK: Mitogen-Activated Protein 
Kinase; PI3K/Akt: Phosphoinositide 3-Kinase/Protein Kinase 
B pathway; NF-κB: Nuclear Factor kappa-light-chain-enhancer 
of activated B cells; STITCH: Search Tool for Interactions 
of Chemicals; PPI: Protein-Protein Interaction; ADMET: 
Absorption, Distribution, Metabolism, Excretion, and Toxicity.

Figure 5: Proposed mechanistic synergy between Peganum harmala and 
Black Garlic in cancer therapy. The diagram outlines how their distinct 

properties-pro-apoptotic, anti-inflammatory, and mitochondrial-disrupting-
converge on shared molecular pathways, enabling AI-driven modeling, 
identification of targets, and future experimental validation for clinical 

translation.
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