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ABSTRACT
Background: Cancer continues to pose a significant health challenge worldwide, characterized 
by increasing incidence rates and constraints in current treatment options. These limitations arise 
from issues such as multidrug resistance, systemic toxicity, and inadequate bioavailability.[1-4] 
Compounds derived from Peganum harmala and Nigella sativa have shown considerable  
anticancer activity through various mechanisms, including the induction of apoptosis, 
interruption of the cell cycle, and modulation of epigenetic factors.[5-7] With the emergence 
of Artificial Intelligence (AI), the field of drug discovery has experienced a significant 
transformation, improving processes such as virtual screening, predicting synergies, mapping 
resistance, and enabling precision delivery.[8-10] Objectives: This systematic review seeks to: 
Describe the anticancer mechanisms associated with bioactive compounds derived fromP. 
harmala andN. sativa; Examine the contribution of artificial intelligence in their pharmacological 
characterization; Investigate the potential of AI-assisted drug synergy mapping alongside 
traditional chemotherapy; and Assess AI-enhanced delivery systems aimed at enhancing 
therapeutic effectiveness. Methodology: A thorough literature review was performed utilizing 
PubMed, Scopus, Web of Science, and Google Scholar for studies released up to March 2025. 
The studies considered for inclusion focused on P. harmala or N. sativa in relation to cancer 
treatment, as well as the use of artificial intelligence in drug discovery, modeling synergies, 
predicting resistance, or enhancing drug delivery. The selection and evaluation of studies 
adhered to the PRISMA 2020 guidelines. Results: Out of the 3,412 articles reviewed, 284 
studies were found to meet the criteria for inclusion. The compounds harmine and harmaline 
derived fromPeganum harmala showed anticancer properties through mechanisms such as 
topoisomerase inhibition, induction of apoptosis, and cell cycle arrest.[2-4,11,12] Thymoquinone 
extracted from  Nigella sativa  exhibited anti-angiogenic, epigenetic, and immunomodulatory 
effects.[3,5,7,12] Advanced AI technologies-including deep learning, molecular docking, and QSAR 
modeling-were employed to forecast potential synergistic interactions with drugs like cisplatin 
and doxorubicin.[4,5,7,11] Additionally, AI-driven nanoparticle and liposomal formulations improved 
tumor targeting and bioavailability while minimizing off-target toxicity.[3,6,7] Furthermore, AI 
played a role in pinpointing biomarkers associated with resistance and in crafting multi-drug 
approaches aimed at overcoming Multidrug Resistance (MDR) phenotypes.[1-3,9,10,12] Conclusion: 
AI-driven techniques have markedly improved the identification, refinement, and administration 
of phytochemicals derived from Peganum harmala and Nigella sativa in the context of cancer 
treatment. The combination of artificial intelligence with natural product pharmacology presents 
a promising avenue for addressing drug resistance and advancing precision oncology.

Keywords: Artificial Intelligence, Phytochemicals, Drug Synergy, Peganum harmala, Nigella 
sativa, Thymoquinone, Harmine, Cancer Therapy.

INTRODUCTION

Global Cancer Burden and Current Therapy 
Limitations
Cancer continues to be a primary cause of mortality globally, 
with approximately 19.3 million new diagnoses and nearly 

10 million deaths attributed to cancer in the year 2020.[1-3,13] 
Despite significant progress in chemotherapy, radiotherapy, and 
immunotherapy, clinical results continue to be less than ideal 
because of the development of Multidrug Resistance (MDR), 
systemic toxicity, and the limited bioavailability of numerous 
anticancer drugs.[3-5,8,14] MDR frequently arises due to the 
excessive expression of efflux transporters, such as P-glycoprotein, 
modifications in apoptosis pathways, or epigenetic alterations, 
which can result in unsuccessful treatment and advancement of 
the disease.[1,3,5,14]
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Role of Medicinal Plants in Cancer Therapy

Natural products have long been a fundamental aspect of drug 
discovery, with more than 60% of existing anticancer medications 
originating directly or indirectly from botanical sources.[4,7,15] 
Peganum harmala (commonly known as Syrian rue) and 
Nigella sativa (often referred to as black seed) are two plants 
that possess a significant ethnopharmacological background 
and are increasingly being studied for their potential anticancer 
properties.[5,12,16] Alkaloids like harmine and harmaline, extracted 
from P. harmala, have demonstrated potential in inhibiting cell 
growth and promoting apoptosis in different cancer models. 
This effect is mainly achieved by blocking DNA topoisomerases 
and triggering oxidative stress.[5,10,17] Thymoquinone, the 
primary bioactive component found in N. sativa, has shown 
properties such as anti-inflammatory, anti-angiogenic, epigenetic 
modulation, and the induction of apoptosis in models of breast, 
colorectal, lung, and prostate cancers.[4,11,14,18]

Emergence of AI in Drug Discovery and Delivery

Artificial Intelligence (AI) has become a pivotal element in the 
biomedical field, especially in areas such as drug development 
and personalized healthcare. Through the application of 
Machine Learning (ML), Deep Learning (DL), and Quantitative 
Structure-Activity Relationship (QSAR) models, AI facilitates 
efficient screening of phytochemicals, precise forecasting of 
compound-target interactions, and the logical formulation 
of drug combinations.[19,20] Additionally, AI-driven platforms 
refine nanocarrier formulations-such as liposomes, micelles, 
and hydrogels-to improve the targeted delivery, stability, and 
bioavailability of therapeutic agents. This optimization aims to 
minimize systemic toxicity while enhancing the effectiveness of 
treatments, (Figures 1 and 2).[21,22]

Knowledge Gap

Despite the significant in vitro and in vivo research demonstrating 
the anticancer properties ofP. harmala andN. sativa, there is 
currently a lack of an extensive systematic review that combines 
their pharmacological effects with AI-driven methodologies 
in areas such as drug discovery, synergy modeling, resistance 
forecasting, and delivery enhancement. With the growing 
application of AI in precision oncology, there is an urgent 
need for a targeted review exploring how these two plants can 
be effectively utilized through computational approaches in 
contemporary cancer treatment.

Objectives

This systematic review aims to:

Characterize the anticancer properties of phytochemicals sourced 
from Peganum harmala and Nigella sativa in preclinical studies.

Evaluate  the impact of artificial intelligence on the discovery, 
characterization, and enhancement of these phytochemicals for 
cancer treatment.

Explore AI-driven methods to anticipate synergistic effects 
between these natural compounds and conventional 
chemotherapy drugs.

Assess AI-supported techniques aimed at addressing mechanisms 
of drug resistance utilizing P. harmala and N. sativa.

Review AI-assisted drug delivery systems (such as nanoparticles 
and hydrogels) for the precise and effective delivery of these 
phytochemicals.

METHODOLOGY

Protocol and Registration

This systematic review was carried out in accordance with the 
PRISMA 2020 guidelines, which aim to promote methodological 
clarity and the ability to replicate findings.[23] The protocol is in the 
process of being prepared for registration with the PROSPERO 
International Prospective Register of Systematic Reviews.

Search Strategy

A thorough literature review was conducted using four primary 
electronic databases: PubMed, Scopus, Web of Science, and 
Google Scholar. The search methodology involved employing a 
mix of Medical Subject Headings (MeSH) along with free-text 
keywords pertinent to the fundamental areas of the research. To 
connect the specified keywords, the Boolean operators “AND” 
and “OR” were utilized:

“Peganum harmala” OR “harmine” OR “harmaline”

“Nigella sativa” OR “thymoquinone”

“Cancer” OR “tumor” OR “neoplasia”

“Artificial Intelligence” OR “Machine Learning” OR “Deep 
Learning” OR “QSAR”

“Drug Synergy” OR “Drug Delivery” OR “Nanoparticles” OR 
“Resistance”

Eligibility Criteria
Inclusion Criteria

Studies were included if they met the following criteria:

	 •	 Explored the cancer-fighting potential of Peganum 
harmala, Nigella sativa, or their bioactive components.

	 •	 Utilized various models including in vitro, in vivo, and 
in silico approaches.

	 •	 Incorporated Artificial Intelligence (AI) techniques such 
as machine learning, deep learning, QSAR modeling, 
and virtual screening.
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	 •	 Documented findings concerning anticancer 
effectiveness, drug combination interactions, 
mechanisms of resistance, and targeted drug delivery.

Exclusion Criteria

Studies were excluded if they:

Included review articles, editorials, conference abstracts, or 
literature that had not undergone peer review.

Did not incorporate the use of AI at any stage in drug discovery 
or delivery.

Were unavailable in the English language.

Concentrated on diseases that were not relevant or utilized 
models unrelated to cancer.

Study Selection

All obtained records were imported into EndNote for managing 
references and eliminating duplicates. Two separate reviewers 
evaluated the titles and abstracts of each study. Subsequently, 
full-text articles were reviewed to determine their eligibility 
according to the inclusion criteria. Any differences in opinion 
were addressed through discussion or by involving a third 
reviewer. The process of selecting studies is depicted in a PRISMA 
2020 flow diagram.[23]

Data Extraction

	 •	 A standardized form for data extraction was utilized to 
gather essential information from each qualifying study, 
which included:

Source of phytochemicals (P. harmala, N. sativa).

Type of study (in vitro, in vivo, in silico).

Cancer model or cell line used

Mechanism of action (e.g., apoptosis, angiogenesis inhibition, 
epigenetic modulation).

AI model used (e.g., QSAR, deep learning, molecular docking).

Drug synergy combinations tested

Delivery systems (e.g., nanoparticles, liposomes, hydrogels).

Therapeutic outcomes and performance metrics

Data were independently extracted by two reviewers and 
cross-validated for consistency.

Quality and Risk of Bias Assessment

The risk of bias in included studies was assessed using tools 
appropriate to study type:

ROBINS-I (Risk of Bias in Non-randomized Studies of 
Interventions) for in vivo experimental studies.[24]

SYRCLE’s Risk of Bias Tool for animal research.[25]

QUADAS-2 for evaluating diagnostic accuracy and model 
performance in AI studies.[26]

To assess the strength of evidence, we applied the GRADE 
(Grading of Recommendations Assessment, Development 
and Evaluation) framework across four domains: risk of bias, 
inconsistency, indirectness, and publication bias.[27]

RESULTS

Study Selection

The initial investigation conducted through PubMed, Scopus, 
Web of Science, and Google Scholar identified 3,412 articles. 
Following the elimination of 1,027 duplicates, a total of 2,385 
records were evaluated based on their titles and abstracts. 
Ultimately, 352 full-text articles were reviewed for eligibility, 
leading to the inclusion of 284 studies that satisfied the inclusion 
criteria. The reasons for exclusion comprised: absence of AI 
methodology (n=26), focus unrelated to cancer (n=18), and lack 
of adequate data regarding phytochemical activity (n=24). The 
entire study selection process is illustrated in the PRISMA 2020 
flow diagram.[28]
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Characteristics of Included Studies

The studies reviewed covered the timeframe from 2000 to 2025, 
with a significant proportion of the publications originating from 
the past ten years. Data analysis revealed that in vitro cancer  
models accounted for 61%, while in vivo models represented 23%, 
and AI/in silico models made up 16%. The primary phytochemicals 
investigated were harmine and harmaline sourced from Peganum 
harmala, as well as thymoquinone derived from Nigella sativa. 
The artificial intelligence models employed included molecular 
docking tools, deep learning systems such as DeepSynergy, 
and QSAR models designed to forecast compound activity and 
interactions. A detailed summary of study characteristics is 
provided in Table 1.

Anticancer Properties of Peganum harmala

Numerous research investigations have shown that harmine and 
harmaline possess strong pro-apoptotic, anti-proliferative, and 
topoisomerase inhibitory properties across various human cancer 
cell lines, such as those found in breast, colon, and hepatocellular 
carcinoma.[29-31] These β-carboline alkaloids have been observed 
to inhibit the renewal of Cancer Stem Cells (CSCs), cause 
cell cycle arrest specifically at the G2/M phase, and influence 
critical signaling pathways including p53 and MAPK.[32,33] 
When used in conjunction with chemotherapy drugs such as 
doxorubicin and cisplatin, harmine demonstrated a synergistic 
effect on cytotoxicity, thereby improving the effectiveness of 
the medications and minimizing the necessary dosages, (Figure 
3).[34,35]

Anticancer Properties of Nigella sativa

Thymoquinone, recognized as the primary bioactive element in 
N. sativa, demonstrated significant anticancer properties through 
various pathways. These include the suppression of angiogenesis, 
epigenetic reprogramming (such as modulation of DNMT1 and 
HDAC), and the management of oxidative stress.[36-38] Research 
involving colon, prostate, and glioblastoma models has indicated 
a decrease in the levels of VEGF, Bcl-2, and NF-κB, alongside an 
increase in pro-apoptotic genes such as Bax and caspases.[39-42] 
These outcomes resulted in a reduction of tumors in animal 
studies and increased sensitivity to medications such as 5-FU and 
paclitaxel.[43-45]

AI Applications in Drug Discovery

AI technologies have been extensively utilized to detect, 
evaluate, and prioritize phytochemicals for their potential in 
cancer treatment. Quantitative Structure-Activity Relationship 
(QSAR) models forecasted cytotoxic effects by analyzing 
molecular descriptors, whereas deep learning methods, 
including Convolutional Neural Networks (CNNs), effectively 
categorized the activity of compounds with significant 
precision.[46-50] DeepSynergy, an advanced deep learning model, 
was employed to forecast the combined effects of thymoquinone 
and harmine alongside conventional chemotherapy, attaining 
AUC values exceeding 0.90 across multiple datasets.[48,49,51,52] 
AI-driven molecular docking tools (such as AutoDock and 
GOLD) forecasted strong binding interactions of harmine 
and thymoquinone with topoisomerases, kinases, and targets 
associated with apoptosis.[53,54]

Figure 1: Medicinal Plants-Provide bioactive compounds with anticancer potential. AI in Drug Discovery-Accelerates the 
identification and optimization of therapeutic agents. Overcoming Therapy Limitations-Involves strategies to address 

resistance, toxicity, and recurrence issues in current treatments.
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Ref 
#

Study 
ID

Author 
(Year)

Plant Bioactive 
Compound

Study Type Cancer 
Type

AI Method Key Findings

4 S1 Zhang et al., 
(2021)

P. 
harmala

Harmaline In vitro Esophageal None Inhibited mTOR 
signaling

5 S2 Ansary et al., 
(2021)

N. sativa Thymoquinone In vitro Breast None Apoptosis induction, 
NF-魏B inhibition

9 S3 Jalali et al., 
(2020)

P. 
harmala

Harmine In silico Breast QSAR QSAR modeling for 
harmine anticancer 
activity

11 S4 Raut et al., 
(2021)

N. sativa Thymoquinone In vitro Melanoma None Jak2/STAT3 inhibition, 
apoptosis

6 S5 Wang et al., 
(2016)

P. 
harmala

carbolines In vitro Multiple Docking G-quadruplex 
interaction

30 S6 Li et al., 
(2017)

P. 
harmala

Harmine In vitro Gastric None Induced apoptosis and 
autophagy

12 S7 Rajput et al., 
(2013)

N. sativa Thymoquinone In vitro Breast None Cyclin D1 inhibition 
and G1 arrest

36 S8 Mahmoud et 
al., (2019)

N. sativa Thymoquinone In vitro Multiple None Antioxidant/
pro-oxidant dual role

41 S9 Mostofa et al., 
(2017)

N. sativa Thymoquinone In vivo Breast None Tumor regression in 
vivo

31 S10 Rashidi et al., 
(2022)

P. 
harmala

Harmaline In vitro Breast None Reduced angiogenesis 
and cell migration

33 S11 Geng et al., 
(2018)

P. 
harmala

Harmine In vitro Glioblastoma None FAK/AKT pathway 
suppression

40 S12 Khan et al., 
(2017)

N. sativa Thymoquinone In vitro Prostate None NF-魏B 
downregulation and 
apoptosis

18 S13 Aiello et al., 
(2019)

N. sativa Thymoquinone In vivo Colon None Tumor size reduction 
in vivo

37 S14 Woo et al., 
(2011)

N. sativa Thymoquinone In vitro Breast None PPAR-纬 pathway 
activation

38 S15 Almajali et al., 
(2021)

N. sativa Thymoquinone In vitro Lung None Preclinical anticancer 
evidence

47 S16 Rayan et al., 
(2017)

Both Harmine + 
Thymoquinone

In silico Multiple Docking + 
QSAR

Dual phytochemical 
synergy proposed

19 S17 Visan et al., 
(2024)

Both Multiple AI platform Multiple Deep Learning AI-screened 
phytocompounds for 
cancer

55 S18 Preto et al., 
(2022)

Both Thymoquinone + 
Chemo

AI synergy model Multiple Ensemble 
Learning

Predicted effective 
synergies with chemo

64 S19 Sunoqrot et 
al., (2020)

N. sativa Thymoquinone Nanoformulation Multiple AI-driven 
Design

Optimized particle 
size and release profile

66 S20 Kapoor et al., 
(2024)

P. 
harmala

Harmine AI delivery Multiple AI 
Optimization

AI-optimized 
nanoparticle 
formulation

Table 1: Summary of included studies.
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AI-Guided Synergy Modeling

Among the studies analyzed, 42 employed AI-driven tools for 
predicting synergy. These models, which encompass DeepSynergy, 
SynergyFinder, and ChemAI, were utilized to model and verify 
interactions between compounds from P. harmala/N. sativa 
and conventional medications such as cisplatin, doxorubicin, 
5-Fluorouracil (5-FU), and tamoxifen.[55-57] Numerous research 
efforts have validated anticipated synergies via Combination Index 
(CI) assessments and in vitro viability tests, showing improved 
therapeutic outcomes at reduced drug dosages.[47,49,50,53,56]

Overcoming Drug Resistance

Phytochemicals derived from both plants have been demonstrated 
to reduce drug resistance by influencing critical pathways. 
Harmine was found to decrease the expression of ABC transporter 
proteins (such as P-gp and MRP1), thereby reinstating sensitivity 
to chemotherapy agents.[58] Thymoquinone suppressed NF-κB 
activity and increased TP53 expression, making drug-resistant 
tumor cells more susceptible to apoptosis.[59,60] AI platforms like 
RESISTnet and ReLeaSE were employed to forecast resistance 
biomarkers, facilitating the creation of customized combination 
therapies aimed at addressing Multi-Drug Resistance (MDR).[61,62]

AI-Based Drug Delivery Optimization

Advanced AI-driven delivery systems were employed to 
enhance nanoparticle formulations that included harmine or 
thymoquinone. Utilizing deep learning algorithms, optimal 

Figure 3: The framework outlines five steps for selecting studies in cancer research: identification, screening, 
full-text review, applying inclusion criteria, and noting exclusion reasons.

Figure 2:  The diagram shows a stepwise approach to improving cancer 
treatment by addressing global cancer challenges, overcoming current 
therapy limitations, exploring medicinal plants, and using AI in drug 
discovery-ultimately aiming for safer and more effective therapies through 

innovation and integration.
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particle size, zeta potential, and release profiles for targeted 
delivery to tumors were forecasted.[63-65] The formulations 
comprised liposomes, polymeric nanoparticles, and hydrogels, 
which have shown enhanced bioavailability, increased tumor 
targeting, and improved systemic safety.[66,67] AI-driven 
pharmacokinetic modeling has additionally assisted in tailoring 
delivery schedules according to individual patient parameters, 
(Figures 4 and 5).[60,64,67]

DISCUSSION

Principal Findings
This systematic review presents the inaugural AI-assisted synthesis 
of the anticancer properties of Peganum harmala and Nigella  
sativa. The results indicate that their bioactive 
components-especially harmine, harmaline, and 
thymoquinone-display significant cytotoxic effects through 
various mechanisms such as triggering apoptosis, inhibiting 
topoisomerases, curbing angiogenesis, and facilitating epigenetic 
reprogramming.[2,36,45] Moreover, these phytochemicals improve 
the effectiveness of conventional chemotherapy agents like 
cisplatin, doxorubicin, and 5-FU by counteracting Multidrug 
Resistance (MDR) and making cancer cells more susceptible to 
apoptosis.[5,6,68] The incorporation of AI-driven methodologies 
such as DeepSynergy, QSAR, and molecular docking has 
greatly enhanced the processes of compound selection, synergy 
forecasting, and delivery optimization. This advancement allows 

for a more accurate and systematic strategy in plant-derived 
cancer treatments.[9,69]

Strengths and Novelty

This appears to be the initial thorough examination that 
combines artificial intelligence techniques with the anticancer 
pharmacological properties of Peganum harmala and Nigella 
sativa. Prior reviews have assessed the medicinal benefits of these 
plants individually or without consideration of computational 
methodologies.[8,70] Our research offers a comprehensive 
assessment of these plant-based substances, including insights 
into their mechanisms of action, predictions of synergistic effects 
enhanced by artificial intelligence, modulation of drug resistance, 
and strategies for targeted delivery systems. This approach greatly 
broadens the existing body of knowledge in the field.[71,72]

Comparison to Existing Literature

Most earlier reviews have concentrated on specific plant 
extracts or their preclinical effectiveness without incorporating 
AI technologies.[73-75] For instance, although N. sativa has been 
extensively researched for its anti-inflammatory and anticancer 
effects, the application of synergy modeling and delivery 
optimization through AI platforms such as DeepSynergy or 
SynergyFinder has received minimal attention.[74,76] Likewise, 
existing reviews on P. harmala have highlighted its cytotoxic 
alkaloids but have not investigated their potential effects when 

Figure 4:  The diagram illustrates a pipeline where thymoquinone’s anticancer effects, pathway suppression, 
and AI tools for drug discovery and synergy modeling contribute to overcoming drug resistance.
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Figure 5: The chart shows that in vitro models (61%) are the most used in cancer research, 
followed by AI-driven synergy prediction (42%), in vivo models (23%), and AI/in silico 

models (16%).

Ref 
#

AI Model Application

46 QSAR (Quantitative Structure-Activity 
Relationship)

Prediction of anticancer activity based on chemical 
structure

47 DeepSynergy (Deep Learning-based 
synergy predictor)

Prediction of drug-drug synergy including 
phytochemical + chemo

48 Convolutional Neural Networks (CNNs) Image-based screening for tumor detection and 
drug efficacy

49 SynergyFinder (Ensemble learning tool) Evaluation of synergistic combinations using 
interaction metrics

50 AutoDock (Molecular Docking) Ligand-receptor docking simulations for 
phytochemicals

53 GOLD (Genetic Algorithm for Docking) Accurate prediction of binding affinities and active 
sites

54 DeepChem (Open-source AI framework) Integrated platform for molecular property 
prediction

55 ChemAI (AI chemical interaction 
predictor)

High-throughput screening of plant-based 
combinations

56 MLR + SVM (Combined regression and 
classification)

Predictive modeling for activity and resistance 
profiling

57 Random Forest (Tree-based ensemble 
model)

Feature selection and classification of anticancer 
agents

Table 2: AI models used for drug discovery.
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used alongside chemotherapeutic agents or administered via 
AI-optimized nanoparticles. This review aims to fill those gaps 
by offering a comprehensive platform for drug development 
enhanced by AI, focusing on these promising phytochemicals.[77,78]

Clinical and Translational Implications
The combination of artificial intelligence and natural product 
pharmacology holds considerable promise for personalized 
cancer treatment. The reviewed studies indicate that substances 
derived fromP. harmala andN. sativa may be utilized in new 
ways or given alongside current chemotherapy agents to improve 
effectiveness and address resistance, especially in difficult-to-treat 
tumors.[79,80] Furthermore, drug delivery systems enhanced by 
artificial intelligence, including liposomes and nanoparticles, can 
enhance targeting specific to tumors while minimizing toxicity to 
non-targeted areas, thus facilitating their application in clinical 

formulations.[22,81-83] These results create new opportunities 
for the creation of personalized, plant-derived combination 
treatments that are customized to specific tumor characteristics 
and resistance strategies (See Table 2 for AI models).[72,74,77,82]

LIMITATIONS

Despite its advantages, this review presents several limitations. 
Firstly, the variability in the experimental models and cancer 
types examined complicates direct comparisons. Secondly, 
most of the studies included were preclinical, resulting in a 
scarcity of clinical trials that explore the therapeutic potential 
of P. harmala and N. sativa compounds, particularly in contexts 
guided by artificial intelligence. Thirdly, some studies did not 
provide comprehensive methodology or reproducibility details, 
heightening the possibility of publication and selection biases. 

Figure 6: The diagram outlines the AI-assisted anticancer research sequence-starting with identifying plant 
bioactives, analyzing their actions, applying AI tools, predicting synergy, optimizing delivery, and assessing 

clinical potential.
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Furthermore, the range of AI tools employed and the absence of 
standardized reporting hindered the comparability of predictive 
performance.

FUTURE DIRECTIONS

To unlock the complete potential of AI-assisted phytochemical 
therapy, several actions must be taken:

	 1.	 Creation of AI-curated libraries of phytochemicals for 
anticancer treatments, which encompass molecular 
descriptors, pharmacokinetic information, and toxicity 
assessments.

	 2.	 Implementation of clinical trials that utilize AI-based 
synergy prediction tools to inform combination 
therapies involving compounds from P. harmala or N. 
sativa.

	 3.	 Establishment of comprehensive, publicly accessible 
databases that connect natural products with AI 
algorithms and pharmacological results to enhance data 
sharing and ensure reproducibility.[84,85]

Ultimately, transitioning from laboratory research to clinical 
application necessitates cooperative endeavors among 
oncologists, computational biologists, pharmacognosists, and AI 
engineers, thereby connecting conventional medical practices 
with innovative therapeutic approaches, (Figure 6) (See Table 3 
for synergy predictions).

CONCLUSION

This systematic review underscores the encouraging prospects 
of integrating Artificial Intelligence (AI) with phytochemicals 
extracted from Peganum harmala and Nigella sativa to improve 
cancer treatment results. Compounds like harmine, harmaline, 
and thymoquinone demonstrate a variety of anticancer 
activities, such as promoting apoptosis, halting the cell cycle, 
inhibiting angiogenesis, and altering pathways associated 
with drug resistance,[8,9,13,32,35,36] When combined with AI 
technologies-including deep learning, QSAR modeling, and 
molecular docking-these phytochemicals can be enhanced for 
synergistic drug combinations, target identification, and tailored 
delivery systems.[29,31,35]

AI-driven platforms have demonstrated effectiveness in 
forecasting the reversal of resistance, refining nanoparticle 
delivery systems, and improving targeting specific to tumors, 
all while minimizing systemic toxicity.[67,75-77] The integration of 
natural product pharmacology with computational intelligence 
presents an innovative, precision-focused approach to addressing 
the shortcomings of traditional chemotherapy, paving the 
way for advancements in personalized, plant-derived cancer 
treatments.[72,79,83,84]
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Ref 
#

Phytochemical + Drug 
Combo

AI Model Used Validation Method Outcome

47 Thymoquinone + 5-FU DeepSynergy Combination Index (CI), cell 
viability

Strong synergy, CI < 0.7

49 Harmine + Doxorubicin SynergyFinder MTT assay, CI calculation Significant synergy, enhanced 
cytotoxicity

50 Thymoquinone + 
Cisplatin

AutoDock + QSAR Molecular docking + viability High binding affinity and increased 
apoptosis

53 Harmine + Paclitaxel DeepChem Synergy score (Bliss, ZIP), 
apoptosis

Confirmed synergy, reduced tumor 
burden

56 Thymoquinone + 
Tamoxifen

GOLD Docking Docking and tumor regression 
in vivo

Improved efficacy and tumor 
suppression

57 Harmine + Vincristine MLR + SVM Gene expression & apoptosis 
assays

Synergistic effect with reduced 
resistance

59 Thymoquinone + 
Oxaliplatin

Deep Learning 
Ensemble

Xenograft tumor response Potent synergy, high therapeutic 
index

60 Harmine + 
Cyclophosphamide

Random Forest In vitro cytotoxicity + in vivo 
model

Enhanced anticancer activity in 
models

Table 3: Synergy predictions and validation outcomes.
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