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ABSTRACT
The discovery of penicillin nearly 90 years ago revolutionized the treatment of bacterial disease. Since that time, numerous other antibiotics have been 
discovered from bacteria and fungi, or developed by chemical synthesis and have become effective chemotherapeutic options. However, the misuse of 
antibiotics has lessened the efficacy of many commonly used antibiotics. The emergence of resistant strains of bacteria has seriously limited our ability 
to treat bacterial illness, and new antibiotics are desperately needed. Since the discovery of penicillin, most antibiotic development has focused on the 
discovery of new antibiotics derived from microbial sources, or on the synthesis of new compounds using existing antibiotic scaffolds to the detriment 
of other lines of discovery. Both of these methods have been fruitful. However, for a number of reasons discussed in this review, these strategies are 
unlikely to provide the same wealth of new antibiotics in the future. Indeed, the number of newly developed antibiotics has decreased dramatically in 
recent years. Instead, a reexamination of traditional medicines has become more common and has already provided several new antibiotics. Traditional 
medicine plants are likely to provide further new antibiotics in the future. However, the use of plant extracts or pure natural compounds in combination 
with conventional antibiotics may hold greater promise for rapidly providing affordable treatment options. Indeed, some combinational antibiotic therapies 
are already clinically available. This study reviews the recent literature on combinational antibiotic therapies to highlight their potential and to guide future 
research in this field.
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INTRODUCTION
Despite the advancements of modern medicine, bacteria continue to 
pose one of the greatest risks to human health. Since the discovery 
of penicillin in 1929 by Fleming,[1] microbial-derived antibiotics 
have completely revolutionized antibacterial therapy. Indeed, 
penicillin became the main therapeutic option for infectious diseases. 
Furthermore, that discovery resulted in a new field of antibacterial 
drug discovery from bacteria and fungi which has provided medicine 
with a myriad of new, highly effective antibiotic compounds. 
However, by the 1940s, widespread use of penicillin resulted in the 
emergence of new strains of microbes capable of destroying the 
drug and negating its effects.[2,3] Similarly, bacteria have developed 
resistance to many other commonly used antibiotics [Figure 1].[4] This 
emerging trend is concerning and is considered by the World Health 
Organization  (WHO) to be perhaps the most urgent issue facing 
medical science.[5]

Bacteria are the oldest and most prevalent organisms on earth. They are 
varied, versatile, and are commensal to all mammals. They can be both 
crucial and detrimental to health, depending on host interactions. Climate, 
habitat, ethnicity, genetics, diet, and activity cause the microbiome to 
fluctuate in diversity and may alter host susceptibility to opportunistic 
pathogens. Evolutionarily, humans have learned to coexist with various 
microbes that are omnipresent on this planet. Although certain microbes 
can be mutualistic, there is a large proportion that are pathogenic and 
can cause a myriad of potentially life-threatening infectious diseases. 
Surprisingly, many of the bacteria which cause human disease are also 
essential to the human microbiome.[6] Consuming drugs alters the balance 
of microbe populations in the gut and may instigate a range of adverse 
effects while still providing treatment for specific diseases. Some bacteria 
may persist over susceptible populations by resisting the drug altogether. 
Multidrug resistance  (MDR), is defined as nonsusceptibility to at least 
one agent in more than two of the known categories for antimicrobials.[7] 
Pathogens which are recognized as extensively drug-resistant (XDR) are 
susceptible to only two or fewer of the antimicrobial categories, and thus, 
pose a substantial threat to human health.
Concurrent with the increased incidence of bacterial resistance to 
antibiotics, there has been a corresponding decrease in antimicrobial 
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discovery. This has directed researchers toward alternative therapies, 
including traditional plant-based medicines, bacteriophage therapies, 
and combinational therapies. This review discusses bacterial resistance 
mechanisms and strategies (both common and novel) in the development 
of new antibiotic therapies. In so doing, we highlight the use of 
plant natural products and plant extracts, particularly in synergistic 
combinations, as having particular promise for rapidly developing new, 
effective treatment modalities available to combat pathogens resistant to 
conventional antibiotic therapies.

A BRIEF HISTORY OF ANTIBIOTICS
Until the early part of the 20th century, the treatment of pathogenic infections 
relied on traditional medicines (usually plant material). The discovery of 
penicillin completely revolutionized the treatment of infectious diseases. 
This serendipitous discovery resulted from a chance observation that the 
growth of Staphylococcus aureus was inhibited by a blue mold (a fungus 
from the Penicillium genus) in culture dishes,[1] demonstrating that some 
microorganisms are capable of producing substances that can inhibit the 
growth of other microbial species. The discovery of penicillin was the start 
of a new era of treatment options for bacterial infections.[8] From that time, 
until the latter part of the last century, there was an exponential increase 
in the number of antibiotics discovered. Within decades of discovering 
penicillin and the sulfonamides, various other antimicrobial agents 
of varying properties were introduced to clinicians.[9] Indeed, twenty 
new classes of antibiotics were developed in the two decades following 
the introduction of penicillin for clinical use, including β-lactams, 
aminoglycosides, tetracyclines, macrolides, fluoroquinolones, and 
cephalosporins. Modified β-lactams and β-lactamase inhibitors provided 
effective treatment and management of the entire Enterobacteriaceae 
family.[10] Another novel class of antibiotics would not be introduced again 
until 1989. Each class of antibiotics has a unique core structure (scaffold). 
Subsequently, many antibiotics have been developed through synthetic 
tailoring of these scaffolds. The discoveries during the mid-1930s to 
the early 1960s determined the chemical scaffolds of the majority of 
antibiotics used today. Existing antibiotics were subsequently modified to 
reduce toxicity, improve their spectrum of activity or cross-assayed to test 
increased efficacy with other antibiotics.[11] Scaffolds of cephalosporins, 

penicillins, quinolones, and macrolides constitute almost three-quarters 
of the new antibiotics discovered between 1981 and 2005.[12] The golden 
age of antibiotic discovery ended in the early 1960s, and the evolution 
of bacterial resistance has since superseded drug discovery. A  timeline 
of antibiotic implementation and the rise of drug resistance is shown in 
Figure 1.
The improper and misuse of antibiotics has resulted in the widespread 
development of resistance by many bacterial species.[13,14] As a 
consequence, two main events have occurred in parallel throughout the 
last century. The discovery of antimicrobial agents has steadily decreased 
to no more than a few antibiotics synthesized or discovered in the last 
decade.[9] Simultaneously, antibiotic resistance has rapidly increased, 
creating multi-resistant organisms that are becoming difficult to manage 
given the current antibiotic treatment regimens.[15] The development of 
alternative treatment methods is crucial and considered by WHO to be 
perhaps the biggest challenge facing medical science.[5]

Antibiotic function
Antibiotics function to kill bacteria or inhibit their growth in a number 
of ways [Figure 2a]. Depending on their class, antibiotics may halt the 
synthesis of proteins and metabolites, disrupt binary fission, or damage 
the integrity of the cell wall.[16] Bacteria can develop resistance innately by 
selective pressures or acquire the resistance machinery from neighboring 
microbes. Bacteria deploy mobile resistance elements (MREs), including 
transposons, plasmids, and integrons, carrying the genetic material 
required to confer resistance but not the genes essential for cell function. 
MREs can be transmitted between bacteria of different phyla either 
directly between adjacent cells (conjugation) or indirectly by salvaging 
intact elements (transformation). Selective pressures for MREs essential 
for survival promote the preservation of drug resistance mechanisms in 
bacterial progeny.[11,17]

EVOLUTION OF BACTERIAL RESISTANCE
The “Golden Age” of antibiotics saw the development of hundreds of 
antimicrobials for curing infectious diseases. This eruption of new drugs 
approved for human use, together with vaccinations, ended several 

Figure 1: The timeline of antibiotic development and the evolution of resistance. Blue arrows indicate antibiotic discovery and commercialization events, 
whereas gold arrows represent bacterial resistance to antibiotics observed in patients
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major trends in infectious diseases. Half of all post-birth deaths caused 
by Streptococcus pyogenes could be prevented with a 4-day prescription 
of penicillin. S. aureus infections became far less serious, with mortality 
rates declining an estimated 80%. Other diseases such as impetigo or 
leprosy became rare or disappeared entirely in developed countries.[18] 
However, the effectiveness of many of these early antibacterial agents 
is now limited due to the development of resistance by many bacterial 
strains. Several factors contribute to the increase in antibiotic-resistant 
bacterial strains. The use of antibiotics has increased at an exponential 
rate throughout many industries.[4] Due to high demands, the production 
of antibiotics has improved in efficiency and lowered in cost. As a result, 
these drugs are released into the environment at a significant rate, 
contributing to the selection of resistant strains. Numerous pathogenic 
microbes have acquired multiple drug resistance, including Streptococcus 

pneumoniae, a causative agent of various common diseases such as 
otitis media, pneumonia, and meningitis.[15] Around two-thirds of all 
ear infections are bacterial, and approximately, 85% of the cases can be 
resolved without the need for antibiotic treatment. However, antibiotics 
are still prescribed to almost every child in the United States presenting 
with an ear infection, further contributing to this resistance. As a result 
of misuse, penicillin can no longer be relied on for the treatment of 
meningitis caused by S.  pneumoniae. This, together with the overuse 
or misuse of antibiotics, has inflicted various selective pressures on 
pathogenic microbes, promoting resistance.

Multi-resistant strains of microbes: “Superbugs”
The number of MDR microbes  (commonly known as superbugs) is 
increasing at a significant rate as a result of widespread antibiotic misuse. 

Figure 2: (a) Antibiotic targets and (b) bacterial resistance mechanisms

b
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These MDR microbes increase the rate of morbidity and mortality due 
to multiple mutations in related diseases.[19,20] Thus, the therapeutic 
options available for these diseases are significantly reduced. Certain 
strains of MDR microbes have also acquired increased virulence and 
enhanced transmissibility. Tuberculosis currently affects around a third 
of the human population.[21] Although streptomycin and isoniazid 
have previously provided effective treatment for this disease, the 
development of resistance was rapid, and XDR strains and totally drug 
resistant  (TDR) forms of the pathogen have evolved.[21,22] Similarly, 
S. aureus became resistant to penicillin treatment relatively soon after 
its discovery. Methicillin  (the first designer anti-resistance antibiotic) 
was introduced in 1960 in the defense against penicillinases,[23] with 
the emergence of methicillin-resistant S. aureus (MRSA) arising shortly 
thereafter.[24,25] The establishment of MRSA within the community may 
be due to the overuse of antibacterial-containing substances in common 
household and hospital cleaning products to achieve a “super clean” 
environment.[26] Triclosan is a nonspecific biocide which has been used 
in clinics and hospitals for many decades. The overuse of triclosan in 
soaps, disinfectants, and clothes detergents has led to the formation of 
triclosan-resistant pathogenic strains, including MRSA.[27,28] Likewise, 
the misuse of various other antimicrobial agents has led to the formation 
of many MDR pathogens, and this requires urgent attention before 
antibiotic resistance becomes more difficult to control.

Resistance mechanisms
Bacteria have developed numerous methods with which to 
resist antibiotic action  [Figure  2b]. The drug insensitivity in 

antibiotic-resistant bacterial strains is generally due to resistance 
genes and their downstream effects. The genes are transported 
through plasmids that favor the survival of the bacteria in various 
destructive environments. Resistance genes may code for efflux 
pumps which eject antibiotic from the cells, as well as genes that 
induce antibiotic-degrading/inactivating enzymes. These traits can 
be inherited, imported from other pathogens, or may occur through 
random mutations in bacterial DNA.[29,30] Furthermore, microbes can 
avoid antibiotic attack through several other mechanisms. A summary 
of some of the major antibiotic drug classes and bacterial resistance 
mechanisms is shown in Table 1. Each type or class of antibiotic can be 
exposed to greater than one single mechanism of resistance and thus 
may develop MDR, XDR, or TDR.
Bacterial resistance mechanisms may work to inhibit membrane 
permeability to antibiotics, produce enzymes which neutralize 
antibiotics or change the antibiotic target to neutralize the interaction.[31] 
The mechanisms may be specific to a target antibiotic or have a broad 
spectrum of activity. Often, antibiotics must be modified or used in 
combination against MDR bacteria to avoid these mechanisms.[32] 
For example, β-lactams  (e.g.,  penicillin, ampicillin, and carbenicillin) 
are often used in combination with β-lactamase enzyme inhibitors. 
Modified β-lactams,  (e.g.,  methicillin, oxacillin), are immune to 
degradation by narrow-spectrum β-lactamases. Methicillin-resistant 
Staphylococcus spp. utilize extended-spectrum β-lactamases  (ESBLs) 
to resist the modified β-lactams,[33] or mutate their penicillin binding 
protein (PBP) to render it unable to bind adequately to penicillin-like 
drugs.[34]

Table 1: Antibiotics in clinical use and modes of resistance

Antibiotic class Examples Drug target Resistance modes
β-lactams Penicillins (ampicillin)

Cephalosporins (cephamycin)
Penems (meropenem)
Monobactams (aztreonam)

Peptidoglycan biosynthesis Hydrolysis
Efflux
Altered target

Aminoglycosides Gentamicin
Streptomycin
Spectinomycin

Translation Phosphorylation
Acetylation
Nucleotidylation
Efflux
Altered target

Glycopeptides Vancomycin
Teicoplanin

Peptidoglycan biosynthesis Reprogramming of peptidoglycan biosynthesis

Tetracyclines Minocycline
Tigecycline

Translation Monooxygenation
Efflux
Altered target

Macrolides Erythromycin
Azithromycin

Translation Hydrolysis
Glycosylation
Phosphorylation
Efflux
Altered target

Phenicols Chloramphenicol Translation Acetylation
Efflux
Altered target

Quinolones Ciprofloxacin DNA replication Acetylation
Efflux
Altered target

Pyrimidines Trimethoprim C1 metabolism Efflux
Altered target

Sulfonamides Sulfamethoxazole C1 metabolism Efflux
Altered target
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Bacterial resistance and the environment
The gastrointestinal system of humans and animals is ideal reservoirs 
for MDR development. Patients prescribed antibiotics in hospitals or 
domestic livestock fed with antibiotics are the highest risk factors for 
developing resistance.[18] In the case of agricultural antibiotic usage, 
the drugs are administered at subtherapeutic doses to promote growth 
in cattle, swine, poultry, and fish.[35-38] The dissemination of antibiotics 
such as β-lactams, colistin, macrolides, sulfonamides, trimethoprim, 
fluoroquinolones, and tetracyclines into the environment further 
increases the prevalence of MREs.[39-44] Depending on their solubility 
and polarity, antibiotics, and their metabolites may be degraded by 
detergents or enzymes, aggregated with sewage sludge or released into 
river systems.[45] Drugs present in sludge may enter agricultural systems 
when the sludge is used as fertilizer, while wastewater and surface water 
containing drugs enters the ecosystem via irrigation. Antibiotics fed to 
livestock may reenter the environment directly when recycled onto crops, 
soils, and detritus as manure. Veterinary drugs and their metabolites 
may directly enter water sources after being added with food into fish 
farms or hydroponics.[45]

A range of antibiotics have been shown to persist in the environment for 
months or even years.[46] The macrolide antibiotic tylosin was found to be 
contaminating the U.S. water sources in 2013.[47] Antibiotics may also be 
released into the environment during manufacturing. This is a particular 
problem for India and China, where antibiotics are produced for livestock 
on substantial scales and regulations may be less stringent.[11] MDR 

bacteria, mobile MREs, or residual antibiotics can then be transferred 
back to humans through contaminated food. They may pass harmlessly 
through the human gut and back into sewage, although the commensal 
microflora colonizing the gut are given ample opportunity for horizontal 
gene transfer and thus resistance may develop in multiple resistant 
bacterial species.[11,48]

Global impacts of antibiotic resistance on human 
health
There is a clear correlation between the increase in antimicrobial 
resistance and the simultaneous increase in morbidity, mortality, and cost 
associated with disease therapy.[49] Some of the major strains of bacteria 
of clinical importance, the diseases they cause, and their resistance to 
antibiotic drugs are summarized in Table 2. Increases in morbidity and 
mortality are due to ineffective and delayed treatment choices. This is 
also true for diseases in which alternative antibiotics are expensive and 
cannot be feasibly administered. Another important consequence of 
antimicrobial resistance is the increase in the incidence of the disease.[62,63] 
This is especially true and far more dangerous in the case of MDR 
organisms. The transfer of such MDR strains, particularly among the 
vulnerable (young, elderly, or immunocompromised individuals) may be 
fatal.[64] Furthermore, the cost of medical care involved in the treatment 
of infectious diseases has significantly increased as a result of antibiotic 
resistance. For example, a 2009 report by the Centers for Disease Control 
and Prevention (CDC) revealed that the cost of hospitalization of a single 

Table 2: A list of some clinically important bacteria, associated diseases, and susceptibility to conventional antibiotics

Pathogen Associated diseases Antibiotic susceptibility
A. baumannii Hospital-acquired pneumonia, ventilator-associated 

pneumonia, bacteremia, meningitis, endocarditis, 
urinary tract infections, wound/burn infections

Resistance to β-lactams, cephalosporins, aminoglycosides, quinolones, and 
carbapenems reported. Sensitive to sulbactam in combination with β-lactams[10]

C. jejuni Diarrhea, dysentery, enteritis Azithromycin and ciprofloxacin are typically used in treatment, resistance 
against both of these drugs has been reported[50]

C. difficile Diarrhea, inflammatory bowel disease Low tolerance for most conventional antibiotics, though strains demonstrating 
substantial resistance to fluoroquinolones are well documented[51]

E. faecalis Endocarditis, septicemia, urinary tract infections, 
meningitis

Most strains resistant to a variety of aminoglycosides, β-lactams, macrolides, and 
cephalosporins[52] Daptomycin, linezolid and ampicillin are used in treatment. 
Ampicillin is used for treatment of resistant strains

E. coli Urinary tract infections, neonatal meningitis, 
gastroenteritis, bowel necrosis, pneumonia, septicemia, 
peritonitis, hemolytic-uremic syndrome (E. coli 0157:H7)

Depending on the strain, E. coli demonstrate resistance to a range of antibiotics. 
Fluoroquinolones, azithromycin, and rifaximin are typically used in treatment[53]

H. pylori Abdominal pain, acute gastritis, nausea, peptic ulcers Increasing resistance to a range of antibiotics including clarithromycin, 
clarithromycin metronidazole, tetracycline, amoxicillin, rifabutin, and 
fluoroquinolones.[54,55] Quadruple therapies adding bismuth colloids are used for 
treatment of highly resistant strains

K. pneumoniae Pneumonia, bronchitis, urinary tract infections, 
meningitis, septicemia

A wide range of reported resistance, mostly aminoglycosides, fluoroquinolones, 
tetracyclines, and trimethoprim. Treatments involve combination antibiotics 
of β-lactams with beta-lactamase inhibitors. Carbapenem and colistin-resistant 
strains often require additional therapies[56]

M. tuberculosis Pulmonary tuberculosis, spinal tuberculosis, meningitis Early β-lactams demonstrate no activity against M. tuberculosis. Current 
therapies focus on dose combinations of isoniazid, pyrazinamide, rifampin and 
ethambutol. Resistance to these drugs has been well-documented[57,58]

N. gonorrhoeae Gonorrhea, dysuria, meningitis, urethritis, endocarditis, 
conjunctivitis, pharyngitis, dermatitis

Resistance to azithromycin, tetracycline, ceftriaxone, and cefixime reported[59]

P. mirabilis Urinary tract infections, urinary calculus Generally susceptible to most antibiotics. Tetracycline and nitrofurantoin 
have proved ineffective, with resistance noted against ampicillin and 
extended-spectrum cephalosporins[60]

P. vulgaris Hospital-acquired pneumonia, ventilator-associated 
pneumonia, urinary tract infections, urinary calculus

Susceptible to a range of antibiotics, including ceftazidime, ciprofloxacin, 
meropenem, and combination therapies with ampicillin/sulbactam or 
piperacillin/tazobactam. Resistance to ampicillin and first-generation 
cephalosporins reported[61]

A. baumannii=Acinetobacter baumannii, C. jejuni=Campylobacter jejuni, C. difficile=Clostridium difficile, E. faecalis=Enterococcus faecalis, E. coli=Escherichia coli, 
H. pylori=Helicobacter pylori, K. pneumoniae=Klebsiella pneumoniae, M. tuberculosis=Mycobacterium tuberculosis, N. gonorrhoeae=Neisseria gonorrhoeae, 
P. mirabilis=Proteus mirabilis, P. vulgaris=Proteus vulgaris



MATTHEW J. CHEESMAN, et al.: Synergistic Plant Extract–Antibiotic Combinations

62 Pharmacognosy Reviews, Volume 11, Issue 22, July-December 2017

XDR-TB patient in the USA is approximately $483,000, which is double 
the cost of treating a MDR-TB patient.[65] Recently, the US Congress has 
announced a total of US$463 million funding for research into antibiotic 
resistance.[66]

Drug resistance in European hospitals is monitored by the European 
Centre for Disease Control and the European Medicines Agency. 
Europe now faces at least 400,000 cases and 25,000 hospitalized-patient 
mortalities per year as a result of MDR bacteria. Extra hospital days are 
estimated at 2.5 million per year and productively losses have exceeded 
€1.5 billion each year since 2007.[61,67] Surging resistance through ESBLs in 
Europe has rendered most third-generation cephalosporins (cefotaxime, 
ceftazidime, and ceftriaxones) ineffective for the treatment of multiple 
Gram-positive and Gram-negative bacterial infections.[68]

Vancomycin-resistant enterococci  (VRE) are a problematic cause of 
urinary tract infections (UTIs), bacteremia, meningitis, intra-abdominal, 
and neonatal infections in the Europe and the USA due to their resistance to 
a variety of antimicrobials. First identified as an outbreak of Enterococcus 
faecium and Enterococcus faecalis infections resistant to vancomycin,[69] 
the resistance was found to be due to the plasmid-borne genes vanA, 
vanB, and vanC.[70,71] E.  faecalis is the predominant enterococci shown 
to resist vancomycin and the cause of 90% of nosocomial infections in 
patients in the USA.[72] Linezolid is currently the last antibiotic available 
for the treatment of VRE infections. Of concern, linezolid-resistant VRE 
clinical isolates have been identified and further therapeutic options are 
desperately required.[73-75]

MRSA is resistant to β-lactams,[76] cephalosporins, carbapenems, and 
aminoglycosides.[77] Resistance to the β-lactam structure arises due to 
the presence of plasmids containing the mecA and mecC resistance 
genes.[34,78] The proportion of nosocomial S.  aureus infections 
identified as MRSA cases vary between 15% and 75% among reports 
from different hospitals.[79-81] Overall, the incidence of MRSA cultured 
from patients in the USA increased from 3% of Staphylococcus 
infections in 1980 to more than 60% at the end of the millennia.[82] 
Less than 20% of MRSA in the USA are susceptible to commercial 
fluoroquinolones.[72] The CDC in the USA reported ciprofloxacin 
resistance in MRSA increasing from less than 5% of patients to 
more than 80% within a year following the clinical approval of 
ciprofloxacin.[82] Compounding the problem, MRSA strains that 
are less susceptible to vancomycin have been isolated from clinical 
samples,[83] with some studies revealing a high rate of vancomycin 
resistant E. faecalis among patient populations.[84]

Another bacterial strain of particular threat to human health is 
Klebsiella pneumoniae, an opportunistic Gram-negative pathogen 
that causes nosocomial and community-acquired infections including 
septicemia, bacteremia, UTIs, pneumonia, wound infections,[84,85] 
and ankylosing spondylitis.[86] β-lactamases encoded by AmpC and 
related genes were found to reduce bacterial sensitivity to a wide 
spectrum of β-lactam drugs such as cephalosporins.[87-89] This was 
followed by the detection of transmissible carbapenem-hydrolyzing 
β-lactamase enzymes, denoted K. pneumoniae carbapenamase (KPC) 
1, 2, and 3.[90-92] The outcome for patients infected with highly resistant 
KPC strains is poor, being strongly associated with mortality,[93,94] 
especially for those who contract the hypervirulent variant that 
produces serious infections.[95] More recently, an XDR K. pneumoniae 
outbreak in China revealed a suite of resistant genes in K. pneumoniae 
from clinical isolates conferring resistance to β-lactams, quinolones, 
aminoglycosides, chloramphenicol and fosfomycin, or to different 
β-lactam/inhibitor profiles.[96] Colistin has now become the final 
resort for treatment in patients infected with resistant K. pneumoniae. 
However, the plasmid-borne mcr‑1 gene provides resistance to this 
antibiotic and its mobile properties also lead to interspecies transfer 

among Gram-negative bacteria.[97] This troubling connection between 
extensive/total resistance, transferability of plasmid-borne resistance 
genes and hypervirulence in K. pneumoniae is likely to have persistent 
and far-reaching consequences on global human health. Moreover, 
it underscores the need for research into the discovery and design 
of novel chemotherapeutic agents or combinatorial approaches to 
antimicrobial therapy.

DISCOVERY OF NEW ANTIBIOTICS: RECENT 
TRENDS
As discussed, the discovery of new antibiotics with novel mechanisms 
of action severely declined during the late 1960s. The last novel class 
of antibiotic to be discovered before the new millennium was in 1968 
with most subsequent antibiotics being modified versions of previously 
discovered antibiotic classes.[98] The development of new antibacterial 
agents has decreased substantially in recent decades despite the 
current demand for new antimicrobial drugs. The cost of research 
and development of antimicrobial agents has risen to a level that 
yield a low  (and thus unattractive) profitability of pursuing new drug 
development within the pharmaceutical industry.[99] This is exacerbated 
by the length of duration  (8  years) that is required in order for new 
agents to pass Phase 1 clinical testing and reach product launch.[98] The 
number of newly approved antibacterial agents has decreased over a 
20-year period from 1983 to 1992, and even more so between 1992 and 
2017 [Table 3].

Drugs in development and clinical trials
The current number of antimicrobials in research and development is 
simply not sufficient for controlling the evolution of MDR bacteria. All 
drugs in development must undergo extensive human trials and any 
success goes unpublished until the agent is approved for human use.[100] 
The Phase 3 development trial stage assesses the effectiveness of the drug 
for clinical use, while reevaluating its efficacy and safety from Phase 2. 
It is common for antimicrobials in Phase 3 to be rejected. In 2010, The 
Centre for Medicines Research estimated that 50% of Phase 3 drugs were 
unsuccessful.[101] Antibiotic drug formulations that are currently within 
Phase 3 development are shown in Table 4.
Novel antimicrobials may be delayed more than a decade after discovery, 
and only one in five drugs ever reach the first human trials in Phase 1.[101] 
Furthermore, approved drugs are often prone to several caveats for the 
treatment of a variety of infections. For example, ceftolozane administered 
with tazobactam (trading as Zerbaxa) was approved for human use in 
December 2014. The drug exhibits specific activity against Pseudomonas 
aeruginosa in patients with hospital-acquired and ventilator-associated 
pneumonia. Post-marketing surveillance of Zerbaxa showed no activity 
against anaerobic pathogens and limited activity as a Gram-positive 
antimicrobial agent. Only limited activity is observed towards pathogenic 
Staphylococcus spp. and Clostridium difficile spp. populations in patients 
by this formulation.[116] The combination of ceftazidime with the novel 
β-lactamase inhibitor avibactam  (sold commercially as Avycaz) was 
approved more recently in February 2015. The drug is administered in 
combination with avibactam to produce an additive effect in patients 
infected with Gram-negative bacteria. Diseases commonly treated by 
Avycaz include pyelonephritis and complicated UTIs. Unlike Zerbaxa, 
Avycaz is active against a broad spectrum of Enterobacteriaceae but is 
still compromised by metallo-β-lactamases  (class  B β-lactamases). In 
particular, Haemophilus moraxella, Neisseria spp., and Acinetobacter spp. 
are unaffected by this drug.[117] New antibiotics are often active across 
limited spectrums, expensive, and may be ineffective against certain 
strains within several years. Indeed, resistance to Avycaz has already 
been reported.[118]
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ALTERNATIVES: NEW SOURCES OF ANTIBIOTIC 
THERAPIES
Vaccination used in conjunction with antibiotics
Antibiotics alone are not a sustainable solution for the treatment of 
bacterial infections. Medicinal alternatives are available that show 
effective antimicrobial activity where antibiotics are not effective, or 
that work to enhance antibiotic activity in  vivo. Vaccines provide a 

prophylactic solution to treatment.[119] They may provide life-long 
immunity and may cost significantly less than the daily dose of some 
drugs. However, the advantage of using antibiotics is that they exhibit 
a broad-spectrum of activity, which is incredibly useful for treating 
infections where the causative agent is unknown. Antibiotics also 
maintain an essential role in the treatment of infections for cancer 
patients and surgical-associated infections.[120] In this regard, vaccines 
and antibiotics appear to demonstrate complementary roles rather than 

Table 3: History of antibacterial drug approvals to the pharmaceutical market (in any country) since 1983. Time intervals are 5-year periods. List does not 
include antibiotics released as combination therapies (e.g., ampicillin/sulbactam) for antibiotic components approved prior to 1983

Year introduced Antibiotic Antibiotic class Total
1983-1987 Cefonicid, cefotetan Second generation cephalosporin 17

Cefmenoxime, ceftazidime, ceftazoxime, cefpiramide, cefixime Third generation cephalosporin
Norfloxacin, ofloxacin, ciprofloxacin Quinolone
Temocillin, ticarcillin β-lactam
Imepinem Carbapenem
Mupirocin Protein synthesis inhibitor
Aztreonam Monobactam
Roxithromycin Macrolide
Rifaximin Ansamycin

1988-1992 Azithromycin, clarithromycin, midecamycin Macrolide 20
Flomoxef Oxacepham
Isepamicin, arbekacin Aminoglycoside
Rifapentine Rifamycin
Teicoplanin Glycopeptide
Cefprozil, loracarbef Second generation cephalosporin
Cefpodoxime, cefdinir, cefetamet, ceftibuten Third generation cephalosporin
Cefpirome Fourth generation cephalosporin
Moxifloxacin, enrofloxacin, lomefloxacin, fleroxacin, rufloxacin Quinolone

1993-1997 Brodimoprim Folate synthesis inhibitor 6
Dirithromycin Macrolide
Levofloxacin, nadifloxacin, sparfloxacin Quinolone
Cefepime Fourth generation cephalosporin

1998-2002 Quinupristin/dalfopristin Streptogramin 4
Linezolid Oxazolidinone
Telithromycin Ketolide

2003-2007 Daptomycin Lipopeptide 3
Tigecycline Glycylcycline
Doripenem Carbapenem

2008-2012 Telavancin Lipoglycopeptide 5
Ceftaroline Fifth generation cephalosporin
Fidaxomicin Macrocyclic
Bedaquiline Diarylquinolone
Telavancin Lipoglycopeptide

2013-2017 Tedizolid Oxazolidinone 5
Ceftobiprole, ceftolozane Fifth generation cephalosporin
Dalbavancin, oritavancin Lipoglycopeptide

Table 4: Antibiotic drugs or drug combinations currently in Phase 3 development. The PEW Charitable Trusts.[102]

Drug name Drug class References
Delafloxacin Fluoroquinolone [103]
Zabofloxacin Fluoroquinolone [104]
Siderophore Cephalosporin [105]
Omadacycline Tetracycline [106]
Eravacycline Tetracycline [107]
Lefamulin Pleuromutilin [108]
Imipenam and cilistatin + relbactam Carbapenem and dehydropeptidase inhibitor + novel β-lactamase inhibitor [109]
Iclaprim DHFR inhibitor [110]
Cadazolid Oxazolidinone [111]
Sodium fusidate (Taksta) Fusidane [112]
Carbavance (meropenem + vaborbactam) Meropenem + novel boronate β-lactamase inhibitor [113]
Plazomicin Aminoglycoside [114]
Solithromycin Macrolide (fluoroketolide) [115]
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redundancy, and it is difficult to scale their benefits to human health. For 
example, herd immunity comes when a suitable portion of a population 
is immunized, depending on the pathogen.[121] This, incidentally, reduces 
the number of patients who require antibiotics.[120] For example, a 
pneumococcal conjugate vaccine can reduce the usage of macrolides 
in hospitals for primary and second-line treatment, as well as diminish 
the incidence of invasive S.  pneumoniae disease in both children and 
adults.[120,122] However, MDR clones are beginning to emerge[122] which 
threaten the success of vaccinations. This has already been observed in 
hospitalized children.[123]

Bacteriophage therapy
Bacteriophages present another alternative in the treatment of antibiotic 
resistant bacteria. Infecting and killing of Shigella spp. with bacteriophage 
was first observed long before Fleming would first observe the effects of 
penicillin.[124] Human phage therapy studies have shown bacteriophage 
are effective at treating patients for a variety of clinically important 
bacteria including Staphylococcus, Klebsiella, and Pseudomonas species 
and these therapies are already used effectively in some Eastern 
European countries.[125,126] The properties of bacteriophage seem to favor 
their clinical use (safety, low dosage required, etc.), although their use 
in Western medicine is yet to be widely accepted. Much of the original 
work on medicinal bacteriophage therapy does not comply with modern 
drug trial protocols. Furthermore, the majority of follow-up research 
was conducted in Eastern Europe and not translated into English. 
Despite this, Western medicine may view bacteriophage therapy as a 
useful alternative to antibiotics in the near future. Recent studies have 
identified bacteriophage therapies as successful and cost-effective for the 
treatment of antibiotic-resistant bacterial infections including MRSA 
and P. aeruginosa.[127,128] This treatment modality is promising for some 
bacterial pathogens, although much more research is required in this 
field.

TRADITIONAL MEDICINES AND 
PLANT‑DERIVED ANTIBIOTIC THERAPIES
Traditional healing systems have relied upon medicinal plants for the 
treatment of bacterial infections for many centuries. Approximately, 80% 
of the developing world relies on traditional medicines derived from 
medicinal plants as their primary health-care modality.[129,130] A survey by 
the United Nations Conference on Trade and Development reported that 
more than 33% of total drugs produced by industrialized nations are plant 
derived and the WHO have recorded the names of over 20,000 species of 
medicinal plants with a variety of potential uses.[131] Medicinal plants are 
often less expensive, safer to use in terms of side effects and more readily 
available in comparison to their synthetic counterparts. Furthermore, 
they are abundant in active compounds that have antimicrobial activity. 
These bioactive substances (phytochemicals) include tannins, alkaloids, 
carbohydrates and glycosides, terpenoids, steroids, flavonoids, and 
coumarins.[130] These compounds are of particular clinical value because 
their bioactivity generally does not confer resistance.[132] At the time 
of this review, no report claims to have observed bacteria developing 
resistance to plant-based antimicrobials (PBAs).
Most bioactive PBAs are phenol derivatives, controlling bacterial growth 
by altering their membrane permeability or reducing the pH. However, 
their activity is generally weak and is often non-specific.[133] Plants 
generally produce these products in relatively high concentrations for 
self-protection against pathogens although exceptions in nature have 
been observed.[132] Polyalthea nemoralis Aug. DC., a Chinese medicinal 
plant, produces a highly-specific pyrithione which inhibits specific fungi 
and bacteria.[134] Structurally, many antibiotic phytochemicals resemble 
clinical antibiotics. Quinine, isolated from the bark of the cinchona tree, 

is a metal chelator with a high activity against Plasmodium spp. in the 
treatment of malaria. Fluoroquinolones were developed from nalidixic 
acid, a precursor of quinines.[135] Some cases of target specificity among 
PBAs have been reported. Coumarins have a high activity against 
S.  aureus while demonstrating no activity against Gram-negative 
bacteria.[132] A significant interaction relevant for clinical infections is 
the bactericidal effects on MRSA demonstrated by a variety of PBAs. 
They include but are not limited to: grape seed extract, screwbean leaf 
extract, peanut tree leaf extract, peanut tree bark extract, sandpaper 
fig bark extract, hibiscus bark extract, and Queensland poplar 
extract.[136,137] The reports of anti-Staphylococcus plant antimicrobials 
in recent studies appear to be motivated by the urgent requirement for 
new anti-Staphylococcal medicines. Studies suggest PBAs have a variety 
of applications against many pathogens. Despite this, plant compounds 
remain under-represented as clinical antibiotic therapies.
Plants remain central to several traditional medical practices including 
Ayurveda  (a traditional Indian medicinal system) and traditional 
Chinese medicine  (TCM). Numerous Indian medicinal plants used in 
folkloric medicine possess significant antimicrobial properties.[131] An 
investigation into fifty popular medicinal plants of 26 different families 
reported that nearly 72% of the plants displayed antimicrobial activity 
against both Gram-positive and Gram-negative bacteria.[131] Despite 
these studies, the vast majority of the plant species globally are yet to be 
researched for therapeutic purposes. Multiple studies have reported that 
Indian medicinal plants possess relatively high levels of antimicrobial 
activity.[129,138,139] Similar studies have also been conducted on plants 
commonly used in TCM. For example, plants used in TCM for the 
treatment of gastric ulcers are highly effective against Helicobacter pylori, 
a causative factor in peptic/gastric ulcer disease.[140] While the majority 
of the pharmacognostic studies originate from Asia; researchers have 
also reported the effectiveness of numerous native traditional medicinal 
plants globally, including studies from the USA,[141] South Africa,[142,143] 
Australia,[86,144-147] and from Trinidad and Tobago in the Caribbean.[148]

Over recent years, Western medicine has begun to acknowledge the 
benefits of traditional medical plants. A  recent report by the WHO 
described medicinal plants as one of the best potential sources of new 
drugs.[130] There are numerous examples of compounds isolated from plants 
that have been effective as antimicrobial agents. Artemisinin, extracted 
from the plant Artemisia annua L., possesses antimalarial properties and 
is responsible for saving millions of lives globally.[149] Resveratrol, which 
is found in grapes and Itadori plants[150] exerts bacteriostatic effects on 
multiple Gram-positive and Gram-negative bacteria.[151,152] Berberis 
aristata DC. and Berberis asiatica Roxb. ex DC. contain the alkaloid 
berberine,[153] which possesses antibacterial properties.[154] However, 
of the approximately 422,000 plant species worldwide, it is estimated 
that only a small portion  (1%–10%) of the estimated total number of 
herbal medicines derived from these species have been examined for 
antimicrobial properties.
Despite a substantial increase in the number of publications on 
antibacterial plants and compounds isolated from them in recent years, 
there are still only relatively few plant-derived drugs in clinical use. This 
may be because plant compounds often require complex combinational 
effects between components to synergize the activity of the bioactive 
compound. Therefore, examination of combinations of plant compounds, 
or of plant compounds in combination with conventional antibiotics 
may be a more fruitful line of research.

COMBINATIONAL ANTIMICROBIAL 
CHEMOTHERAPIES
There are several ways in which antimicrobial resistance can be prevented, 
reduced and/or reversed and using medicinal plant extracts with intrinsic 
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antimicrobial properties has proven to be a relatively effective method. 
However, a combinational approach that allows synergistic interaction 
between plant extracts and conventional antibiotics is arguably the 
most effective method to combat antibacterial resistance.[155] There is 
already evidence for the enhancement of conventional antibiotics by 
acting synergistically with plant-derived compounds. The combination 
of β-lactams with α-mangostin isolated from mangosteen fruit,[156,157] 
or with quercetin or kaempferol from various fruits, vegetables, 
and grains,[158] substantially increase the efficacy of the therapy in 
β-lactam resistant bacterial strains. It is likely that the mangosteen 
derived components of these combinations may inhibit the bacterial 
β-lactamase enzyme, thus reactivating the antibiotic. Even plant-derived 
compounds which themselves have been found to possess antibiotic 
properties  (e.g.,  berberine) ameliorate P.  aeruginosa aminoglycoside 
resistance.[159] Therefore, the ability of plant compounds to “re-purpose” 
conventional antibiotics in the treatment of microbial infections may 
significantly impact global health in terms of combatting resistant 
pathogenic microorganisms. Further examples of similar combinations 
are shown in Table 5.
Synergistic evaluation studies examine combinations of two or more 
drugs in the hopes of achieving an enhanced overall effect which is 
substantially greater than the sum of their individual parts.[164] Recently, 
combination therapy has gained widespread recognition, especially in the 
field of infectious disease. According to the WHO, combinational therapy 
is preferred over monotherapy in multiple life-threatening infectious 
diseases such as malaria, tuberculosis, and HIV/AIDS due to its ability to 
target multiple facets of a disease and to curb resistance.[165] Antimicrobial 
natural product combination drugs have become a research priority due 
to several factors, including an economical advantage over conventional 
methods of drug discovery. In comparison to developing a new drug 
which requires years of extensive testing, an aim of combination therapy 
is to restore an existing drug to a state of significantly reduced resistance. 
Restoring activity to conventional antibiotics using combinations would 
enable the drug to reach clinical usage much more rapidly and at a much 

lower development cost as the bioactive component of the combination 
has already been evaluated through extensive clinical trials. Thus, the 
testing requirements are less rigorous. Further advantages of synergistic 
interactions are increased efficiency, reduced side effects, increased 
stability and bioavailability, and the need for lower doses in comparison 
to synthetic alternatives.[155] Plant extract/antibiotic combinations not 
only contribute to and enhance the overall antimicrobial effect, but 
can also act as resistance modifying/modulating agents. Some crude 
plant extracts damage the cytoplasmic membrane of resistant bacteria 
and cause loss of intracellular components. A  recent study reported 
that multiple Salvia spp. and Matricaria recutita had synergistic effects 
with oxacillin, greatly enhancing its efficacy.[166] The exact mechanism 
for the reduction in antibiotic resistance by those extracts is still 
unclear. However, the authors of that study postulated that it was due 
to a structural change within the resistant bacteria. The plant extracts, 
coupled with the action of oxacillin, potentially caused significant 
perturbation of the cell membrane.
The word “synergy” implies that the resulting effect of a combination 
is significantly greater than the sum its individual parts.[164,167] However, 
a combination of two antimicrobial agents may also be defined using 
other categories such as additive, noninteractive, and antagonistic. An 
“additive” effect is when substances added together will improve or 
increase efficacy, albeit not to the extent of a synergistic interaction. 
For “non-interactive”  (or indifferent) combinations, the individual 
components of the combination show neither additive nor antagonistic 
effects. “Antagonism” is when a combination of agents produce an overall 
effect lesser that a sum of their individual effects (i.e., the two drugs are 
reducing the efficacy of each other). There are several interpretations 
on how synergistic interactions can and should be quantified among 
researchers. However, the most recent and widely accepted method is 
the use of fractional inhibitory concentration index  (ΣFIC)  (derived 
from minimum inhibitory concentration  [MIC]) and isobologram 
analysis [Figure 3a] in the interpretation of synergistic results.[168,169] A 
synergistic result would have a ΣFIC ≤0.5; an additive is ΣFIC >0.5–1.0, 

Table 5: Examples of plant-based antimicrobials used in combination with antibiotics demonstration successful antimicrobial activity against clinically 
important bacteria in vitro

Plant studied PBAs + Antibiotic Bacteria 
treated (FICI)

Comments

Berberidaceae spp. Berberine + azithromycin MRSA (0.375) MICs of the berberine + azithromycin combination against MRSA reduced 
by 50%-96.9% compared to the agents used alone[160]

Berberidaceae spp. 8-acetonyl-dihydroberbine 
+ levofloxacin

MRSA (0.188) 8-acetonyl-dihydroberbine possibly exhibits a greater ability to permeate the 
membrane of MRSA than berberine[160]

S. tetrandra Tetrandrine + cefazolin MRSA (0.250) MICs of the tetrandrine + cefazolin combination against MRSA reduced by 
75%-94% compared to the agents used alone[161]

S. tetrandra Demethyltetrandrine + 
cefazolin

MRSA (0.188) MICs of the demethyltetrandrine + cefazolin combination against MRSA 
reduced by 50%-94% compared to the agents used alone[161]

T. broussonetii Carvacrol/borneol + 
pristinamycin

K. pneumoniae (0.500) Carvacol shown to destabilize the cytoplasmic membrane of bacteria by 
reducing pH[162]

T. maroccanus Carvacrol/thymol + 
ciprofloxacin

V. cholerae (0.140), 
K. pneumoniae (0.37), 
S. aureus (0.26), P. 
aeruginosa (0.15)

Synergy demonstrated against both Gram-positive and Gram-negative 
bacteria[162]

T. maroccanus Carvacrol/thymol + 
gentamycin

P. aeruginosa (0.180) T. maroccanus extract (89.15%) contains a greater proportion of carvacrol 
than Thymus broussonetii extract (21.31%), suggesting T. maroccanus may 
demonstrate greater antimicrobial activity[162]

Z. multiflora Thymol/carvacrol + 
vancomycin

S. aureus (0.185) MICs of thymol/carvacrol + vancomycin against S. aureus was lowered from 
1 µg/mL to 0.125 µg/mL when used in combination[163]

Z. multiflora Thymol/carvacrol + 
vancomycin

MRSA (0.320) First study to report the synergistic effects of Z. multiflora against MRSA[163]

S. tetrandra=Stephania tetrandra, T. broussonetii=Thymus broussonetii, T. maroccanus=Thymus maroccanus, Z. multiflora=Zataria multiflora, 
S. aureus=Staphylococcus aureus, MRSA=Methicillin-resistant S. aureus, K. pneumoniae=Klebsiella pneumoniae, V. cholerae=Vibrio cholerae, 
P. aeruginosa=Pseudomonas aeruginosa, MICs=Minimum inhibitory concentrations, Z. multiflora=Zataria multiflora, PBAs=Plant-based antimicrobials,  
FIC= fractional inhibitory concentration
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noninteractive is ΣFIC  >1.0  –  ≤4.0, and antagonistic is ΣFIC  >4.0. 
Examples of the effects of plant extracts combined with oxacillin 
treatment of a resistant bacterial strain are shown in Table 6.

Synergy: The future of antimicrobial studies?
Combinational therapies may improve the activity of weak antimicrobials 
against bacteria [Figure 3b]. Antibiotic combinations for the treatment 
of resistant infections have already been reported to be effective. One 
drug may neutralize or overwhelm the bacterial resistance mechanisms, 
repurposing the antibiotic drug by increasing its efficacy. Perhaps 
the best-known example of antibiotic synergy is the combination of 
clavulanic acid (a fungal-derived inhibitor of β-lactamase enzymes) with 
β-lactam antibiotics.[170] In response to the misuse of β-lactam antibiotics 
over an extended period, many bacterial strains have evolved to produce 
β-lactamase enzymes which cleave the β-lactam ring structure of these 
antibiotics, rendering them ineffective. Clavulanic acid is a weak β-lactam 
with negligible intrinsic antimicrobial activity on its own despite sharing 
a similar β-lactam ring with other β-lactam antibiotics. The similarity in 
chemical structure allows the molecule to bind β-lactamase irreversibly 
and act as an inhibitor of the enzyme. An antibiotic chemotherapy named 
Augmentin® (combination of amoxicillin and potassium clavulanate) is 
formulated to take advantage of these synergistic combinational effects 

and has effectively repurposed β-lactam antibiotics for use against 
β-lactam resistant bacteria. The combination of β-lactam antibiotics 
such as amoxicillin with β-lactam inhibitors such as clavulanic acid has 
been shown to be substantially more effective against Myobacterium 
tuberculosis than amoxicillin alone.[171] Furthermore, clavulanic 
acid in combination with ampicillin, cephalothin, cephaloridine, or 
cefamandole is proven to act synergistically (reduced MIC and minimal 
bactericidal concentration) against β-lactamase-producing S.  aureus 
and Enterobacteriaceae.[170] There is enough evidence to suggest that the 
β-lactamase inhibitor may bind irreversibly, contributing to the overall 
efficacy of the antibiotic component of the combination.[170]

Microbes have also developed numerous other methods to resist 
antibiotics. Perhaps the most common method is through the use of MDR 
pumps. These efflux pumps are encoded chromosomally and utilized 
to rapidly remove antibiotics that have entered the bacterial cells, thus 
rendering them resistant to the effects of the antibiotic.[172,173] A single 
pump can allow the bacteria to escape various types of antimicrobials. 
If the actions of the pumps are inhibited, then the intracellular 
concentration of antibiotic will increase, allowing the treatment to 
once again be effective. Interestingly, many plants possess MDR pump 
inhibitors to enhance the activity of their own natural antimicrobial 
compounds. Such MDR pump inhibitors become great tools when 
used in combination with some previously ineffective/resistance-prone 
antibiotic compounds.[172] For example, synergistic activities have been 
reported for several plant tannins/conventional antibiotic combinations 
against both resistant and sensitive strains of Acinetobacter baylyi.[174] 
Ellagic acid and tannic acid were particularly effective potentiators of 
several antibiotics, with approximately 4-fold increases in potency against 
novobiocin, chlorobiocin, coumermycin, fusidic acid, and rifampicin 
compared to the antibiotics alone. Interestingly, neither ellagic acid 
nor tannic acid had appreciable antibacterial activity on their own. In 
contrast, neither of these tannins significantly potentiated the activity of 
tetracycline. That study also reported that the synergistic action of ellagic 
acid and tannic acid was due to the inhibition of an MDR efflux pump.
As well as the development of efflux pumps, bacteria may also become 
resistant to antibiotic action by target-site modification  (preventing 
the binding of antibiotic) and by drug inactivation.[175] Often, 
bacteria combine several of these approaches to protect themselves. 
Each antibiotic is rendered inactive by a variation of those general 
mechanisms. For example, penicillin targets cell wall biosynthesis 
whereas chloramphenicol and erythromycin inhibit protein synthesis. 
The outer membrane of some bacteria functions as a selective barrier 

Table 6: Interactions of plant extracts and oxacillin in effect on 
methicillin-resistant Staphylococcus epidermidis. Adapted from Chovanova 
et al, 2013[166]

Plant extract FIC A FIC B FIC Interpretation
S. fruticosa 0.03 0.17 0.20 Synergistic
S. officinalis 0.05 0.09 0.14 Synergistic
S. sclarea 0.06 0.09 0.15 Synergistic
A. tinctoria 0.12 0.47 0.59 Additive
C. nobile 0.13 0.41 0.54 Additive
M. recutita 0.06 0.12 0.18 Synergistic
T. argyophyllum 0.26 0.53 0.79 Additive
T. parthenicum 0.24 0.51 0.75 Additive

FIC A: MIC of substance A tested in combination/MIC of substance A tested 
alone, FIC B: MIC of substance B in combination/MIC of substance B tested alone, 
FIC=FIC A + FIC B. A=Oxacillin, B=Plant extract. S. fruticosa=Salvia fruticosa, 
S. officinalis=Salvia officinalis, S. sclarea=Salvia sclarea, A. tinctoria=Anthemis 
tinctoria, C. nobile=Chamaemelum nobile, M. recutita=Matricaria recutita, 
T. argyophyllum=Tanacetum argyophyllum, T. parthenicum=Tanacetum 
parthenicum, MICs=Minimum inhibitory concentrations, FIC= Fractional 
inhibitory concentration

Figure 3: (a) An isobologram, used to determine whether drug combinations produce effects that differ from the effects of the drugs used individually. When 
the calculated ratio for two combined inhibitors fall in quadrants, A depicts synergy, B an additive effect, and C a non-interactive effect, whilst D depicts an 
antagonistic interaction (adapted from [164]). (b) Response of a candidate bacterial strain to a conventional antibiotic and/or a plant extract: (i) sensitive 
bacteria + antibiotic, or resistant bacteria + plant extract;  (ii) resistant bacteria + antibiotic;  (iii) extensively/totally resistant bacteria + antibiotic + plant 
extract; and (iv) extensively/totally resistant bacteria + antibiotic

ba
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which contains integral outer membrane proteins, some of which provide 
entry and exit points for antibiotics. Loss or modification of these outer 
membrane proteins may lead to antimicrobial resistance due to reduced 
membrane permeability and thus, reduced uptake of antibiotics.[176] 
A range of antibiotics including penicillin and chloramphenicol are 
particularly susceptible to these resistance mechanisms. Specific plant 
compounds have been reported to induce perturbations in the cell 
membrane and increase the permeability of antibiotics to bacterial 
cells.[176] These membrane perturbations, coupled with the action of 
β-lactams on the transpeptidation of the cell membrane, may enhance the 
inhibitory activity of the antibiotic.[177] Furthermore, some plant-derived 
compounds can improve the in vitro activity of peptidoglycan inhibiting 
antibiotics by directly attacking the same site in the cell wall.

Recent studies into synergistic combinations 
of plant extract/compounds with conventional 
antibiotics
Over the last decade, the number of studies examining the synergistic 
interaction between plant extracts and resistance-prone antibiotics has 
significantly increased. The endemic Sicilian plant Berberis aetnensis 
C. Presl. interacts synergistically with ciprofloxacin.[178] Chloroform 
extracts derived from the leaves of B.  aetnensis significantly lower the 
MIC of ciprofloxacin against S. aureus, Escherichia coli, and P. aeruginosa. 
A  combination of antibiotics and extracts of clove, jambolan, 
pomegranate, and thyme demonstrated significant synergistic activity 
against a multi-resistant strain of P. aeruginosa.[179] Similarly, enhanced 
antimicrobial activity was observed in combinations of clove-ampicillin 
and clove-tetracycline against K.  pneumoniae and Proteus spp. 
respectively.[179] Furthermore, crude extracts of various other plants in 
combination with different antibiotics had significantly decreased MIC 
values against different strains of drug-resistant P.  aeruginosa[180] and 
clinical isolates of MRSA.[181] These synergistic studies not only show 
promise in the fight against drug-resistant pathogens but may also 
repurpose antibiotics that are generally ineffective alone.
Other recent studies have also reported interesting synergistic effects 
for other plant/antibiotic combinations. Isoflavones isolated from the 
plant Lupinus argenteus Pursh. potentiate the activity of the natural 
plant antibiotic berberine and the synthetic fluoroquinoline antibiotic 
norfloxacin. The isoflavone allows a greater concentration of berberine to 
accumulate in S. aureus cells by inhibiting the efflux mechanism (MDR 
pump).[172] Similarly, Mezoneuron benthamianum Baill. and Securinega 
virosa  (Roxb.) Baill. extracts act as efflux pump inhibitors  (EPIs) for 
fluoroquinolone, tetracycline, and erythromycin in resistant strains of 
S.  aureus  (MRSA).[173] As a consequence, M.  benthamianum ethanol 
and chloroform extracts of S.  virosa reduce the MIC of norfloxacin 
against S. aureus by a factor of 4.[173] Berberis spp. are known for their 
production of the antimicrobial alkaloid berberine.[182] However, 
they also produce an inhibitor of a S.  aureus efflux pump, identified 
as 5-methoxyhydnocarpin  (5-MHC). 5-MHC induces a significantly 
decreased MIC for berberine against S.  aureus, greatly potentiating 
its efficacy. Similarly, Helichrysum longifolium DC. extracts have been 
reported to potentiate the activity of a broad range of antibiotics against 
multiple bacterial species.[177] While the synergistic mechanism was not 
determined in that study, the authors suggested that the H. longifolium 
extracts contain broad spectrum antibiotic resistance modifying 
compounds.
Another study reported synergistic activity for Petalostigma spp. extracts 
in combination with multiple antibiotics.[183] A methanolic Petalostigma 
spp. extract interacted synergistically with penicillin, chloramphenicol, 
and erythromycin to inhibit the growth of Proteus mirabilis. The 
P.  mirabilis strain tested in that study was particularly resistant, being 

completely non-susceptible to chloramphenicol and erythromycin, 
and with only a low susceptibility to penicillin. All of these antibiotics 
are susceptible to resistance due to efflux pumps.[176,184] A single efflux 
pump can provide bacteria with resistance to a wide array of chemically 
and structurally diverse antibiotics, and it is not uncommon for an 
organism to code for more than one efflux pump. It is therefore likely 
that compound(s) within that extract may block the efflux mechanism 
or alter the process of efflux and in so doing, extend the life of existing 
antibacterial drugs, allowing these antibiotics to again block the growth 
of the P. mirabilis strain. There are currently no EPI/antimicrobial drug 
combinations on the market. However, several recent studies have also 
reported EPI activity for several other plant extracts and compounds 
isolated from them. A recent study reported that carnosic acid isolated 
from Rosmarinus officinalis L. potentiated the activity of erythromycin.[176] 
That study determined that the increased erythromycin activity was due 
to an inhibition of the bacterial MDR pumps by carsonic acid.
It is possible that the Petalostigma spp. extracts examined in the Ilanko 
et  al.[183] study may also contain an irreversible β-lactamase inhibitor 
which functions similarly to clavulanic acid to block the bacterial 
antimicrobial resistance mechanism. Alternatively  (or in addition to 
MDR efflux pumps), the P. mirabilis strain used in that study may have 
acquired genes encoding for reduced-affinity penicillin-binding protein 
2a (PBP2a), rendering β-lactam antibiotics ineffective. In another study, a 
bioactive fraction, F-10 was identified from Duabanga grandiflora.[185] The 
F-10 fraction in this work was shown to act synergistically with ampicillin 
in inhibiting the growth of MRSA. Furthermore, investigations into 
the combinational mechanism revealed that there was a link to PBP2a 
inhibition. Western blot analysis was used to confirm that a combination 
of F-10 and ampicillin totally suppressed the expression of PBP2a in 
MRSA. It was postulated that F-10 interferes with the regulatory genes 
involved in the expression PBP2a. A phytochemical analysis revealed the 
presence of flavonoids and tannins in F10. Since PBPs are a group of 
protein enzymes, it appears likely that these phytochemicals may form 
nonspecific interactions and affect the bacterial cell biosynthesis.
Interestingly, the Ilanko et al.[183] study also identified a lower polarity 
hexane Petalostigma spp. extract as blocking a different efflux pump 
mechanism in A.  baylyi. The bacteria were completely resistant to 
tetracycline alone. Similarly, the extract alone was also ineffective 
against A.  baylyi. However, a combination of the extract with 
tetracycline displayed potent growth inhibitory activity. Efflux pumps 
are the main bacterial resistance mechanism which renders tetracycline 
inactive.[182] A total of nine multidrug efflux systems have been identified 
in Acinetobacter spp. alone, including the potent tetracycline efflux 
protein Tet  (A).[186] It is therefore likely that the lower polarity extract 
compounds act to inhibit the A.  baylyi tetracycline efflux pump. 
Similar studies with compounds isolated from a different plant species 
(Thymus vulgaris L.) identified the trihydroxyflavone baicalein as 
possessing a strong synergistic activity when used in conjunction with 
tetracycline against MRSA expressing Tet  (K).[182,187] Baicalein alone 
displays only weak antibacterial activity. Bioassay-guided isolation 
of plant extracts also identified several diterpenes  (including carnosic 
acid) as potentiators of tetracycline activity against microbes possessing 
Tet (K) multidrug efflux mechanisms.[184,188] Similarly, reserpine (a plant 
alkaloid) isolated from the Rauwolfia vomitoria Afzel. also demonstrated 
effective EPI activity against the bacterial MDR efflux pump which 
mediates tetracycline efflux in Bacillus subtilis.[184]

CONCLUSIONS
The early successes in antibiotic therapy yielded life-saving outcomes and 
is an example of possibly the most remarkable global scientific advance 
in modern medicine. The effectiveness of antibiotics used against a 
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myriad of infectious microorganisms has been severely thwarted by the 
evolution of microbial resistance, arising as early as a decade following 
the discovery of penicillin. This worsening, ongoing trend has resulted 
in bacterial infections that are now completely resistant to all of the 
present day conventional medicines previously capable of eradicating 
the infection. Consequently, the use of synergistic treatment regimens 
incorporating plant extracts or purified compounds derived from 
plants has become an emerging area of great interest in the medical 
and scientific community. Not surprisingly, many such plants are those 
traditionally used by indigenous communities to treat infectious diseases. 
The evidence is accumulating that the use of plant extracts enhance the 
antibacterial activity of conventional antibiotics, serving to repurpose 
these compounds rather than replacing them.
There are numerous other advantages associated with the use of 
synergistic therapies. The plant-derived component would require 
a facile screening process to ensure that it is non-toxic, thus reducing 
the cost of development and testing while enhancing its speed to the 
market. This has already been demonstrated by the incorporation of the 
nonantibiotic β-lactamase inhibitors  (e.g.,  clavulanic acid) alongside 
β-lactam drugs, which, in such cases, serve to protect the antibiotic 
from enzymatic destruction. Such a therapeutic strategy is quite specific, 
repurposing only a single class (or limited classes) of antibiotic. However, 
the development and use of efflux pump inhibitors may have a greater 
impact as it may repurpose a wider spectrum of antibiotics as efflux 
pumps often eject multiple antibiotics from the cell. Thus, this line of 
research may ultimately prove to be very useful.
While it remains imperative that research continues in the area of the 
development of new synthetic drugs and new scaffolds, the use of extracts 
derived from a myriad of traditionally used plant species as synergistic 
potentiators of medicines that had been previously effective signals a 
coming of age in the treatment of highly resistant infectious diseases that 
threaten the global community. By regaining the susceptibility of such 
pathogens to rigorously tested antibiotics, the fight against pervasive, 
transmissible, and deadly bacteria may finally shift in favor of the clinical 
treatment of such illnesses.
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